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Learning for Autonomy
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Autonomous Systems

Learning-Based Algorithms

Computational Methods

Adam Thorpe, UT Austin



Does scale lead to generalization?
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Open X-Embodiment

Adam Thorpe, UT Austin



Edge cases
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Autonomous systems will encounter scenarios outside the training data.

Adam Thorpe, UT Austin



Unseen environments
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Autonomy needs to be able to adapt to unseen environments.

Adam Thorpe, UT Austin



Practical autonomy will need to operate safely with humans
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Parasuraman, R., & Riley, V. (1997). Humans and Automation: Use, Misuse, Disuse, Abuse. Human Factors

We need to design autonomous systems to avoid misuse, disuse, and abuse.

Adam Thorpe, UT Austin



Rare events
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Autonomy must continue to make informed decisions in the face of uncertainty.

Adam Thorpe, UT Austin



Learning-based algorithms can be fragile
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Training Data

Unseen Environments

Rare Events

Edge Cases

U
nknow

ns



…across domains

We need algorithms that can adapt & transfer…
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…across platforms…across tasks

Adam Thorpe, UT Austin



What do I mean by adaptation and transfer?
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Adaptation updating or refining learned models using new data

Transfer leveraging knowledge from diverse sources

knowledge sources

Adam Thorpe, UT Austin



Moving beyond black-box learning
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knowledge data

Incorporating known physics and mathematical structure

Adam Thorpe, UT Austin



My research: learning for autonomy
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Learning Structured 
Representations

Function Encoders

Human-Autonomy 
Interaction

Characterizing Heterogeneity

Adaptable Autonomy 
& Inductive Transfer

Zero-Shot Modeling & Control

Neural Operator 
Learning

Basis to Basis Operators

Adam Thorpe, UT Austin



Preview of main results
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Zero-Shot System Identification & Control Vision to Dynamics

Basis to Basis Operator Learning

Adam Thorpe, UT Austin



?

Existing transfer approaches
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Meta-Learning 
Chelsea Finn, Pieter Abbeel, Sergey Levine. 

(2017). Model-Agnostic Meta-Learning for Fast 
Adaptation of Deep Networks.

Imitation Learning
O’Neill, A., Rehman, A., Maddukuri, A., Gupta, A., 

Padalkar, A., Lee, A., ... & Chen, M. (2024). Open X-
Embodiment: Robotic Learning Datasets and RT-X 

Models

Transformers
Ashish Vaswani, et. al. (2017). Attention is All you Need. 

D. Celestini, D. Gammelli, T. Guffanti, S. D'Amico, E. 
Capello and M. Pavone. (2024). Transformer-Based 

Model Predictive Control: Trajectory Optimization via 
Sequence Modeling

SVMs Ridge RegressionGPsDensity Estimation

Hilbert Space Representations

Kernel PCA

guarantees efficientinterpretable
Adam Thorpe, UT Austin



Prior work: kernel-based stochastic optimal control
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Intractable Optimal Control Problem

(unknown dynamics/disturbance)

kernel-based reformulation

Data Kernel Representation Linear Program≈

Prior Physics Knowledge

approximate solution

Approximate Policy: 

෍

𝑖=1

𝑚

𝛼𝑖 𝑥 𝑘(𝑢𝑖 ,⋅)

Thorpe, A., Lew, T., Oishi, M. & Pavone, M. (2022). Data-Driven Chance Constrained Control using Kernel Distribution Embeddings.  L4DC

guaranteesoffline training fast inference

Neural Networks

uncertain mass
unknown disturbance

unknown dynamics
obstacle

obstacle
data complexity least squares structure

Kernel Methods

scales with the 
amount of data

we want the best 
of both worlds



Function encoders: combining neural networks and Hilbert spaces
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Basis:

Representation:

1

𝑥

𝑥2

𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

1 𝑥 𝑥2

𝑎 𝑏 𝑐

simple polynomial example

Problem: How can we represent Hilbert spaces?

𝑔1

𝑔2

𝑔3

𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝑘

𝛼1 𝛼2 𝛼3 ⋯ 𝛼𝑘

𝑓 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

function encoders

neural network
basis functions

coefficients

Adam Thorpe, UT Austin



Breaking function encoders down: offline training, online inference
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∇𝜃𝐿

∇𝜃𝐿

∇𝜃𝐿

𝑔1

𝑔2

𝑔3

Offline Training
learn the basis functions 

Online Inference

𝑔1

𝑔2

𝑔3

መ𝑓𝑛𝑒𝑤 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

𝛼1
𝛼2

𝛼3

compute the coefficients 𝛼
least squares

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.



Offline Training: Training neural network basis functions
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𝑓𝑛

𝑓3

𝑓2

𝑓1

offline training data

1

𝑁𝑚
෍

𝑛=1

𝑁

෍

𝑖=1

𝑚

𝑓𝑛(𝑥𝑖) − መ𝑓𝑛(𝑥𝑖)
2

MSE loss

backpropagate

መ𝑓1, … , መ𝑓𝑛

∇𝜃𝐿

least squares

basis NNs

coefficients estimate

መ𝑓𝑛 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

𝑔𝑗

estimate

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.

can be used as a drop-in 
replacement for a 
standard neural network

(e.g. trajectories in different 
weather conditions)



Online Inference: Computing coefficients for a new function
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• efficient least squares computation
• no network retraining or fine-tuning
• interpretable via basis functions

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.

መ𝑓𝑛𝑒𝑤 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)coefficients estimate

least squares estimate

❆

basis NNs

𝑔𝑗

𝑓𝑛𝑒𝑤

online data

(unseen, mixed conditions)

learned

⋯



Preview of main results
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Zero-Shot System Identification & Control Vision to Dynamics

Basis to Basis Operator Learning

Adam Thorpe, UT Austin



Zero-shot transfer of neural ODEs
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Problem: how can we identify system dynamics at runtime using limited data?

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2024). Zero-shot transfer of neural ODEs. NeurIPS

Scenario: delivery drone with unknown mass/inertia

unknown mass
unknown dynamics

𝑥(0)

𝑥(1)

𝑥(2)

𝑥(𝑁)

𝑥(3)
⋯

initial state

final state

Given: 
• historical trajectories with varying masses
• a small amount of online data

Goal: estimate dynamics 

 ሶ𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡)

𝑥 𝑡 = 𝑥 0 + න
0

𝑡

𝑓𝜃 𝑥 𝜏 , 𝜏 𝑑𝜏neural ODE:

𝑥 𝑡 = 𝑥 0 + න
0

𝑡

෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 𝜏 , 𝜏 ∣ 𝜃𝑗) 𝑑𝜏

Our approach:

function encoder: 𝑥 𝑡 = 𝑥 0 +෍

𝑗=1

𝑘

𝛼𝑗න
0

𝑡

𝑔𝑗 𝑥 𝜏 , 𝜏 𝜃𝑗 𝑑𝜏



Function encoders enable accurate zero-shot prediction
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time steps

long-horizon prediction accuracy

m
ea

n 
sq

ua
re

d 
er
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r

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2024). Zero-shot transfer of neural ODEs. NeurIPS

our approach 
makes accurate 
predictions 
from only a few 
seconds of 
online data

Zero shot: zero gradient updates, using only online data

lower is better

m
ea

n 
sq

ua
re

d 
er

ro
r

10-step prediction accuracy

average
mass

mass

neural ODE

function encoder
function encoder (mean centered)

function encoders 
adapt to the hidden 
parameters

lower is better



Function encoders enable accurate downstream control

22Ingebrand, T., Thorpe, A. J., & Topcu, U. (2024). Zero-shot transfer of neural ODEs. NeurIPS

neural ODE

neural ODE

function encoder

function encoder (mean centered)

function encoder (mean centered)

function encoder
target

altitude

z 
(m

)

z 
(m

)

time (s)time (s)

low mass trajectory high mass trajectory

more 
accurate 
models lead 
to better 
control 
performance

neural ODE 
baseline oscillates, 
fails to reach 
target altitude

neural ODE model has too much or too little thrust

Accurate models are critical for safe control



Function encoders enable transfer beyond the training data
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Using the properties of the Hilbert space for transfer

inside the training data outside the training data

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝜇 1 − 𝑥2

2 𝑥2 − 𝑥1

𝜇 = 0.1 𝜇 = 1.0 𝜇 = 2.0 𝜇 = 3.0

true
estimated

training data 𝛼2training data 𝛼1 interpolation in the convex 
hull of 𝛼1 and 𝛼2

Van der Pol oscillator:

𝜇 = 4.0

extrapolation outside the 
convex hull

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2024). Zero-shot transfer of neural ODEs. NeurIPS



A geometric characterization of transfer
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training data

interpolation in the 
convex hull

extrapolation to the 
linear span

extrapolation to the 
Hilbert space

Adam Thorpe, UT Austin



A very simple transfer test 
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How well do existing approaches transfer?
training functions functions in the convex hull

function encoder

transformer

MAML

oracle

gradient steps

L2
 e

rr
or

gradient steps

function encoder

quadratic

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces. ICML

MAML

trans.

functions in the linear span

gradient steps

function encoder

scaled quadratic

≈1000x worse!

trans.

MAML

autoencoder

functions in the Hilbert space

gradient steps

function encoder

cubic

MAML
trans.

indicates partial transfer



More transfer applications
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Image Classification

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces. ICML

Pose Estimation

Dynamics Prediction
Trai n Test

L2
 e

rr
or

gradient steps

MAML

function encoders

lower is better

gradient steps

L2
 e

rr
or

function encoders

lower is betterhigher is better

gradient steps

function encoders

ac
cu

ra
cy



Outline
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Zero-Shot System Identification & Control Vision to Dynamics

Basis to Basis Operator Learning

Adam Thorpe, UT Austin



Adaptation and transfer for robotics
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X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. 

Schmittle, J. Lee, W. Yuan, Z. Chen, S. Deng, G. 
Okopal, D. Fox, B. Boots, A. Shaban (2023). 

Terrainnet: Visual modeling of complex terrain for 
high-speed, off-road navigation.

Mapping Navigation
Han, T., Liu, A., Li, A., Spitzer, A., Shi, G., & Boots, 

B. (2023). Model predictive control for aggressive 
driving over uneven terrain.

Adam Thorpe, UT Austin

Semantic Segmentation
Jiang, P., Osteen, P., Wigness, M., & Saripalli, S. 

(2021). Rellis-3d dataset: Data, benchmarks and 
analysis

What’s missing?

the ability to adapt & transfer to unseen environments or terrains



Adapting robots to new conditions at runtime

Adam Thorpe, UT Austin 29

mud?

dirt

grass

Problem: how can we adapt to different terrains?



Using camera images to adapt to the terrain

30

Problem: how can we adapt to different terrains?
Given: historical data on various terrains
Goal: estimate the robot dynamics from camera images

The Great Outdoors Dataset

Adam Thorpe, UT Austin



V2D: Vision to Dynamics
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V2D

embedding

𝑧1
⋮
𝑧𝑛

𝛼1
⋮
𝛼𝑘

coefficients
ℝ384

ℝ100

function 
encoder

patch
BEV Image

Em
be

dd
in

g

DINOv2 or STERLING

64x64

Adam Thorpe, UT Austin

Results

time

𝑣𝑥 𝜔𝑧

V2D adapts to 
changing terrain using 
only camera images

ground truth

prediction

Driving on Mars:



Outline
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Zero-Shot System Identification & Control Vision to Dynamics

Basis to Basis Operator Learning

Adam Thorpe, UT Austin



Neural operator learning: function to function maps
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Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). 

Learning nonlinear operators via DeepONet based on the universal 
approximation theorem of operators.

DeepONet
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., 

Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for 
parametric partial differential equations.

Fourier Neural Operators

Main challenge:

DeepONet & FNO require the input 
data to be on a fixed grid or mesh

Adam Thorpe, UT Austin

Bhan, L., Shi, Y., & Krstic, M. (2023). Neural operators for bypassing gain 
and control computations in PDE backstepping

PDE Control



Basis to Basis Operator Learning (B2B)
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Learned Input Basis Learned Output Basis

Given: input-output pairs of transformations (𝑓, 𝑇𝑓)
Goal: approximate 𝑇:ℱ → ℋ

𝑇

Operator

𝑇 𝛼 = 𝛽

𝛼 𝛽𝑇𝛼 = 𝛽

linear nonlinear

Ingebrand, T., Thorpe, A. J., Goswami, S., Kumar, K., & Topcu, U. (2025). Basis-to-basis operator learning using function encoders. CMAME



An illustrative linear example: derivative & antiderivative

te
st

 e
rr

or

te
st

 e
rr

or

derivative operator antiderivative operator

gradient stepsgradient steps

POD DeepONet

DeepONet

SVD

DeepONet 2-stage

B2B (proposed)

B2B (proposed)ED

• extrapolates to the linear span
• maintains accuracy, even when 

the measurement locations change

varying sensor locations:

B2B 35

𝑑𝑠(𝑥)

𝑑𝑥
= 𝑢 𝑥 , 𝑇𝑢 𝑥 = 𝑠 𝑥 = 0 + න

0

𝑥

𝑢 𝑡 𝑑𝑡𝑠 0 = 0,

lower is better lower is better



A nonlinear example of basis to basis for PDE modeling

36

(output function) ground truth(input function)

B2B

DeepONet

error

Modeling the solution of a partial differential equation

loading function displacement

B2B has lower error, 
and doesn’t rely on a 
fixed grid or mesh.

SVD

B2B (ours)

DeepONet
POD DeepONet

buckling

∇ ⋅ 𝜎 + 𝑓 𝒙 = 0, 𝒙 = 𝑥, 𝑦
𝑢, 𝑣 = 0, ∀𝑥 = 0

input function

Neural operators model the entire solution, not just one instance!



My research: learning for autonomy
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Learning Structured 
Representations

Function Encoders

Human-Autonomy 
Interaction

Characterizing Heterogeneity

Adaptable Autonomy 
& Inductive Transfer

Zero-Shot Modeling & Control

Neural Operator 
Learning

Basis to Basis Operators

Adam Thorpe, UT Austin



Operator learning & inverse problems

38

Neural operator learning represents a new frontier in learning and autonomy.

“inferring causes from effects”

forward problem

controller trajectory

inverse problem (control)

trajectory controller

basis to basis inverse operator learning

𝑇𝑓

𝑇−1𝑓

Adam Thorpe, UT Austin

Bellman operator: 𝑇𝑓 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 ℙ ⋅ 𝑥, 𝑢 , 𝑉𝑓

We need fundamentally new algorithms to handle 
adaptation & transfer that offer global solutions. 



Beyond scale: adaptation and transfer through structure
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multi-fidelity transfer

analytic model

low fidelity high fidelity

0 hours 12 hours 24 hours

historical data

low fidelity simulation

surrogate models

analytic models

physics knowledge simulated data

high fidelity simulation adaptation

deployment

To advance autonomy, we need to explore new strategies for 
adaptation and transfer that incorporate structure.

Adam Thorpe, UT Austin

same-day autonomy



Putting it together: digging on the Moon (…or wherever we go to next)

40

differentiable simulators

The Problem: we won’t know until we get there… 

Adam Thorpe, UT Austin

𝑑𝑠(𝑥)

𝑑𝑥

surrogate physics models

sensing & perception



Putting it together: applications in aerospace autonomy

41

urban air mobility

human-robot teaming

high-risk, remote environments

Adam Thorpe, UT Austin

disaster response

analysis

data

knowledge
user feedback/personalization

air traffic control
recommender



Cognitively-Aware Autonomy

42

Demo: design a cognitively-aware 
intelligent tutoring system

Great job! Here’s 
something you 
could try next time…

LLM feedback

cognitive state policy

beginner intermediate advanced expert

learning stage classification

new trial

intelligently adjusts tutor to the learner

self-confidence

M. S. Yuh, E. Rabb, A. Thorpe and N. Jain. (2024). Using Reward Shaping to Train Cognitive-Based Control Policies for Intelligent Tutoring Systems
Ortiz, K. R., Hunter, J. G., Thorpe, A. J., Yuh, M., Reid, T., Jain, N., & Oishi, M. (2024). Assessing the Relationship Between Learning Stages and Prefrontal Cortex 
Activation in a Psychomotor Task



Teaching & Mentoring

43

• meeting student needs through personalized support and frequent, individualized feedback
• focusing on problems and projects to ground theoretical concepts in practical problems
• designing inclusive classroom environments

Adam Thorpe, UT Austin

enhance existing courses with modern theory (e.g. connections between controls & learning)

learning-based control

computational 



Outreach & Service

44

Summer Intensive Research Initiative STEM Muse Kickoff My 2024 TACC REU Mentee

Adam Thorpe, UT Austin

explicit goals, measurable impacts, long-term initiatives

• commitment to service
• cultivating a culture of belonging
• building mentorship networks, e.g. STEM Muse Mentorship Program

• early research opportunities, e.g. undergraduate internships, REU programs
• improve access through outreach, e.g. Code2College, Texas Advanced Computing Center 

REU, NSF Summer Intensive Research Initiative



My research: learning for autonomy
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Learning Structured 
Representations

Function Encoders

Human-Autonomy 
Interaction

Characterizing Heterogeneity

Adaptable Autonomy 
& Inductive Transfer

Zero-Shot Modeling & Control

Neural Operator 
Learning

Basis to Basis Operators

Adam Thorpe, UT Austin

Contact: adam.thorpe@austin.utexas.edu
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