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Does scale lead to generalization?

Open X-Embodiment
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Edge cases

Autonomous systems will encounter scenarios outside the training data.

/
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Unseen environments

Autonomy needs to be able to adapt to unseen environments.
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Practical autonomy will need to operate safely with humans

We need to design autonomous systems to avoid misuse, disuse, and abuse.

Parasuraman, R., &Riley, V. (1997). Humans and Automation: Use, Misuse, Disuse, Abuse. Human Factors
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Rare events

Autonomy must continue to make informed decisions in the face of uncertainty.
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Learning-based algorithms can be fragile

Training Data

A N

Edge Cases

Unseen Environments

Rare Events




We need algorithms that can adapt & transfer...

...across domains ...across tasks ...across platforms
,';,‘ | dv& ) -li r - . ‘ _— -
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What do | mean by adaptation and transfer?

Adaptation updating or refining learned models using new data

UPDATE... UPDATE...
'
g

Transfer leveraging knowledge from diverse sources
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Moving beyond black-box learning

Incorporating known physics and mathematical structure

knowledge
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My research: learning for autonomy
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Preview of main results

Vision to Dynamics

nonlinear 2D Darcy flow
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Existing transfer approaches

Meta-Imitation Learning 1
provide demonstration data : provide 1 demo with new object
Training - |
Task 1 Task 2 E
=== Examples - o4 [8) :
apple  orange bike car '
1
. . l |
Testing Fy Testing Fy '
Examples | Examples :
1
1
1

l teleoperated robot demos
3 = 7
| —r ol —r l
} } : <P
apple orange prediction bike  car prediction learn how to infer a policy 1 - L
from one demonstration 1 Hmm }-::::ﬂllmj
1 |—‘—| |—‘—|
ii l 2 |
Inputs Outputs

Meta-Learning Imitation Learning Transformers
Ashish V i, et. al. (2017). Attention is All Need.
Chelsea Finn, Pieter Abbeel, Sergey Levine. O’Neill, A., Rehman, A., Maddukuri, A., Gupta, A., shish Vaswani, et. al. (2017). Attention is Allyou Nee
(2017). Model-Agnostic Meta-Learning for Fast Padalkar, A., Lee, A., ... &Chen, M. (2024). Open X- D. Celestini, D. Gammelli, T. Guffanti, S. D'Amico, E.
Adaptation of Deep Networks. Embodiment: Robotic Learning Datasets and RT-X Capello and M. Pavone. (2024). Transformer-Based
Models Model Predictive Control: Trajectory Optimization via

Sequence Modeling

®
AL N 3 ’
®
Density Estimation GPs Kernel PCA  Ridge Regression
Hilbert Space Representations
guarantees interpretable efficient
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Prior work: kernel-based stochastic optimal control

Approximate Policy: i

Intractable Optimal Control Problem *(U1x) "&’ PP y scales with the
/\ / amount of data

l (unknown dynamics/disturbance) m

S > a0k,
i=1
Data — Kernel Representation — Linear Program Kernel Methods
PN

k.

we want the best| 2" @

f b h l d data complexity least squares structure
. . ﬂ - Neural Networks
IRSA
(s [ﬁj ~ K% -
e )
unl:lnnoc:vs:ziigt:‘lrel;zsnce obstacle offline training fastinference guarantees

unknown dynamics




Function encoders: combining neural networks and Hilbert spaces

Problem: How can we represent Hilbert spaces?

93
4 f(x) = ax® + bx + 4 f(x)=z g;i(x16;)
j=1 I
neural network
> > $ g, basis functions
1
simple polynomial example function encoders
Basis: {1 x x2} {91 92 93 - Yk}
Representation: | | | |
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Breaking function encoders down: offline training, online inference

Offline Training Online Inference
learn the basis functions compute the coefficients
least squares
93
& 7
@ |
fnew(x) = Z gj(x | Hj)
j=1
g2 gZ

91

16



Offline Training: Training neural network basis functions

k can be used as a drop-in
f(x) = z ajgi(x16;) replacement for a
fi =1 standard neural network
S SN coefficients » estimate ! fn= MSE loss
f 1 N m
A 2
3 = ;;an(xi) ~ful
fn Vol

{gj} r
g backpropagate

basis NNs
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Online Inference: Computing coefficients for a new function

k

e
9\;2. ,-""'ﬂ""“-,,‘ fnew — coefficients » estimate Frew(x) = zajgj(x | 6;)

J=1

* efficient least squares computation
* no network retraining or fine-tuning

9, ‘E * interpretable via basis functions

basis NNs
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Preview of main results

Vision to Dynamics

nonlinear 2D Darcy flow
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Zero-shot transfer of neural ODEs

Problem: how can we identify system dynamics at runtime using limited data?
Scenario: delivery drone with unknown mass/inertia

Given:
* historical trajectories with varying masses

N
 asmallamount of online data x(N)
Goal: estimate dynamics .
(t) = t)t
x(t) = f(x(t),t) (2) x(3)
t
x(1) neural ODE: x(t) = x(0) +J fg(x(f)lf)df
0
Our approach:

unknown mass / X(O)

k, ko,
unknown dynamics function encoder: x(t) = x(0) + Eijgj(xc(@),,nll @) it
TT1=1
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mean squared error

Function encoders enable accurate zero-shot prediction

Zero shot: zero gradient updates, using only online data

long-horizon prediction accuracy

1.t

11,5

11,6

0.4 4

0.0 -
|

1

time steps

Wi

our approach
makes accurate
predictions
from only a few
seconds of
online data

mean squared error

10-step prediction accuracy

average
mass

function encoders
adapt to the hidden
parameters

neural ODE
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Function encoders enable accurate downstream control ~yy

Accurate models are critical for safe control

neural ODE model has too much or too little thrust

4
|05 4 eural ODE more fungtion encoder (mean centered) neural ODE
target LOD m=====af==== == = ) )
altitude accurate o —ton encoder baseline oscillates,
—pp | ] = .
models lead . fails to reach
function encoder (mean centered neural ODE .
055 panetion encoder "1 | to better ) target altitude
€ control T 090-
N performance N
(LRS- 0.85 4
(k=L

LER

low mass trajectory high mass trajectory

075 3 : ' :
] | 2 3 4 3 0 1 2 3 4

time (s) time (s)
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Function encoders enable transfer beyond the training data

Using the properties of the Hilbert space for transfer

Van der Pol oscillator:

)°C1=x2

Xy = u(1 = xx — x4

I
d (=] L] £ (=1
i i

training data a4

interpolation in the convex
hull of ¢y and a,

inside the training data

- true
- estimated

training data a,

-6 ‘u == 40
-2 -1 0 1 2
extrapolation outside the
convex hull

outside the training data
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A geometric characterization of transfer
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L2 error

A very simple transfer test

How well do existing approaches transfer?

training functions functions in the convex hull functions in the linear span functions in the Hilbert space
100 A
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indicates partial transfer
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More transfer applications

100%
90%

> 80%

o

5 70%

3

& 60%

50%

40%

Ingebrand, T., Thorpe, A.J., & Topcu, U. (2025). Function Encoders: APrincipled Approach to Transfer Learning in Hilbert Spaces. ICML

function encoders

P = ~

0 12500 25000 37500 50000
gradient steps

higher is better

10t

10°

function encoders

L2 error

lower is better

0 12500 25000 37500 50000
gradient steps

MAML

lower is better

¥ 9 .
"fu nction encoders

0 12500 25000 37500 50000
gradient steps
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Outline

Vision to Dynamics
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Adaptation and transfer for robotics

Aﬂﬂm@vh = .
BEV Feature Map { (Resnet-18) I
Mapping Navigation
X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Han, T., Liu, A., Li, A., Spitzer, A., Shi, G., & Boots,
Schmittle, J. Lee, W. Yuan, Z. Chen, S. Deng, G. B. (2023). Model predictive control for aggressive
Okopal, D. Fox, B. Boots, A. Shaban (2023). driving over uneven terrain.

Terrainnet: Visual modeling of complex terrain for
high-speed, off-road navigation.

What’s missing?

(b) image labels  (a) raw images

int labels

(© poi

W void W dint Weess W wee W pole W owaer  Wsky vehicle M object [ asphalt
W build W log person | fence bush M concrete W barrier puddle M mud M rubble

Semantic Segmentation

Jiang, P., Osteen, P., Wigness, M., & Saripalli, S.
(2021). Rellis-3d dataset: Data, benchmarks and
analysis

the ability to adapt & transfer to unseen environments or terrains
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Adapting robots to new conditions at runtime

Problem: how can we adapt to different terrains?

Adam Thorpe, UT Austin



Using camera images to adapt to the terrain

Problem: how can we adapt to different terrains?
Given: historical data on various terrains
Goal: estimate the robot dynamics from camera images

The Great Outdoors Dataset

Raw images

Image labels

DEVCOM

ARMY RESEARCH
LABORATORY

Adam Thorpe, UT Austin
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V2D: Vision to Dynamics

function
encoder

embedding coefficients

/ Embedding \
&%
}

Results Driving on Mars:

ground truth

Yo

prediction

L T H | | 1 V2D adapts to
time changing terrain using
only cameraimages
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Outline
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Basis to Basis Operator Learning
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Neural operator learning: function to function maps

u(wzy)

w7

(T ]l

Glu)(y)

v — K

& ool [& b

DeepONet

Lu, L., Jin, P, Pang, G., Zhang, Z., & Karniadakis, G. E. (2021).
Leaming nonlinear operators via DeepONet based on the universal
approximation theorem of operators.

Time Time

PDE Control

Bhan, L., Shi, Y., & Krstic, M. (2023). Neural operators for bypassing gain
and control computations in PDE backstepping

Adam Thorpe, UT Austin

(a)

@4’[Fouricr layer lHFuurierIayerZI—» (XX ] Fourier layer T ° @

(b)

P s - - . . Fourier layer
) =06
\'®/

Fourier Neural Operators

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K.,
Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for
parametric partial differential equations.

Main challenge:

DeepONet & FNO require the input
data to be on a fixed grid or mesh

Input function Qutput function G(u)
at fixed sensors £q,...,&m at random location 3
I ] e Lrry o -~ ._1"

e BN »

. % ,
I . e

G
- —_—
.7 =

e - " T e "

ay T2
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Basis to Basis Operator Learning (B2B)

Given: input-output pairs of transformations (f, Tf)
Goal: approximate T: F - H

a; | T(a) =P
f "
o — D —
: Operator
.
| _

Learned Input Basis

Ta =P a-E2—f

linear nonlinear

7
P
P

p

Tf

Learned Output Basis
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testerror

An illustrative linear example: derivative & antiderivative

X

ds(x
O _ w0, s =0, Tu() =s(x=0)+ | wodt
dx 0
derivative operator antiderivative operator
10"
1[]1" — P,
101{ o
1[]!.!‘.
107 §
e ~—— POD DeepONet -:
100 S 10
| o
107! SVD w1074k
2
10-* DeepONet 107 -
10-3 ED T B2B (proposed)
10—+ B2B (proposed)
. , , . 107 y ’ .
0 1700 32000 52500 TOOO0 0 17500 35(]()9 52500 70000
gradient steps gradient steps

* extrapolates to the linear span
* maintains accuracy, even when

| the measurement locations change .
B2B S

varying sensor locations:




A nonlinear example of basis to basis for PDE modeling

Modeling the solution of a partial differential equation

B2B

DeepONet

loading function displacement

(input function) (output function) ground truth error

UE

0nh 1.0

input function
v

V-eo+ f(x) =0,x=(x,y)

(u,v) =0,vx =0

B2B has lower error,
and doesn’trely on a
fixed grid or mesh.

g 6] &) ¢

Neural operators model the entire solution, not just one instance!

B2B (ours)

~SVD

0 17500 35000
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Operator learning & inverse problems

Neural operator learning represents a new frontier in learning and autonomy.

We need fundamentally new algorithms to handle
adaptation & transfer that offer global solutions.

forward problem inverse problem (control)

/' N

[ |

i ﬁ I - /
controller trajectory trajectory controller

Bellman operator: Tf (x,u) = R(x,u) + y(IP’( ‘| x,u),Vf)

basis to basis inverse operator learning

[ ] b
a 7 > 12
@3 < Ps

: T-1f :

% B

“inferring causes from effects”

Adam Thorpe, UT Austin
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Beyond scale: adaptation and transfer through structure

To advance autonomy, we need to explore new strategies for
adaptation and transfer that incorporate structure. 24h

same-day autonomy

historical data jﬁ_ physics knowledge ;:‘ surrogate models g simulated data x deployment
@ analytic models E low fidelity simulation E high fidelity simulation éb% adaptation
0 hours 12 hours 24 hours

multi-fidelity transfer

£
254 r

209 1

15 A

E' analytic model

10 4

low fidelity
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Putting it together: digging on the Moon (...or wherever we go to next)

The Problem: we won’t know until we get there... ¥ sensing & perception

surrogate physics models

ds(x)
dx

differentiable simulators

Adam Thorpe, UT Austin 40



Putting it together: applications in aerospace autonomy

urban air mobility

analysis \

data =»

knowledge /
- user feedback/personalization

Adam Thorpe, UT Austin

V. air traffic control

disasterresponse

o./" 3
high-risk, remote environments

) 2
B
A

, 1™

human-robot teaming

i
i3
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Cognitively-Aware Autonomy

Demo: design a cognitively-aware
intelligent tutoring system

intelligently adjusts tutor to the learner

e N
to t t,
beginner intermediate advanced expert action
y y dg, dp
* self-confidence
. \_ J
_ new trial
, ’fﬂ]}»z @ mPiO v 4 )
MMD,; > F i, Greatjqb! Here’s
s, something you

could try nexttime...
N ) . J

N o | _. i A2~ Raytheon

&“ewt;zs;zrc% ;JPPL.]\I.{RU]E; ';!:EXA\S @]l University of Colorado Boulder m 4 R Technologies
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Teaching & Mentoring

meeting student needs through personalized support and frequent, individualized feedback

focusing on problems and projects to ground theoretical concepts in practical problems
* designing inclusive classroom environments

enhance existing courses with modern theory (e.g. connections between controls & learning)
learning-based control

computational

Adam Thorpe, UT Austin
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Outreach & Service

explicit goals, measurable impacts, long-term initiatives

* early research opportunities, e.g. undergraduate internships, REU programs
* improve access through outreach, e.g. Code2College, Texas Advanced Computing Center
REU, NSF Summer Intensive Research Initiative

* commitment to service
e cultivating a culture of belonging
* building mentorship networks, e.g. STEM Muse Mentorship Program

2 pasTTT T ’ “‘ ~ — —‘ -
sy isidisaizimpilo s é : /f{,lsg =L

N @ = NN TR,
; (,&\‘\ v, ERRR R R

§ -
| d \. -

tagaligtas ng buhay

i Summer Intensive Research Initiative
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