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The Vision: adaptable autonomy in unseen environments
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Adapting robots to new conditions at runtime
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Problem: how can we adapt to different terrains?



Adaptation and transfer for robotics
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X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. 

Schmittle, J. Lee, W. Yuan, Z. Chen, S. Deng, G. 
Okopal, D. Fox, B. Boots, A. Shaban (2023). 

Terrainnet: Visual modeling of complex terrain for 
high-speed, off-road navigation.

Mapping Navigation
Han, T., Liu, A., Li, A., Spitzer, A., Shi, G., & Boots, 

B. (2023). Model predictive control for aggressive 
driving over uneven terrain.
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Semantic Segmentation
Jiang, P., Osteen, P., Wigness, M., & Saripalli, S. 

(2021). Rellis-3d dataset: Data, benchmarks and 
analysis

What’s missing?

an adaptive model of how the robot drives on different terrains



learning a model that drifts to the goal
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low friction terrain (ice)

successfully navigating to the goal requires an accurate model



How can we identify a dynamics model at runtime using limited data?
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Given: 
• historical trajectories on varying terrains
• a small amount of online data

Goal: estimate dynamics ሶ𝑥(𝑡) = 𝑓𝑤(𝑥 𝑡 , 𝑢 𝑡 , 𝑡)
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Learning a space of terrain-induced dynamics for online adaptation
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accurate control



Breaking function encoders down: offline training, online inference
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Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.
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Function encoders adapt to varying terrains
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function encoders are more 
accurate because they adapt
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Function encoders improve downstream control performance
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function encoder (ours)neural ODE

Accurate models are critical for safe control



successfully drifting to the goal
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learned model extrapolates to new terrains and successfully 
completes the objective while avoiding obstacles

Given:
• function encoder model 

trained on various terrains
Objective:
• reach goal on new, unseen 

terrain (low friction)
Using:
• seconds of online data (~10s)



Real-time adaptation using recursive least squares
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From zero to autonomy in seconds.

terrain change

pavement ice

• we only need to update the coefficients to adapt
• can be performed online in real time
• handles changing terrain without retraining



Future Work: Vision to dynamics
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Goal: estimate the robot dynamics from camera images
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