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…across domains

We need algorithms that can adapt & transfer…
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…across platforms…across tasks

Adam Thorpe, UT Austin



What do I mean by adaptation and transfer?
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Adaptation updating or refining learned models using new data

Transfer leveraging knowledge from diverse sources

knowledge sources

Adam Thorpe, UT Austin



Moving beyond black-box learning
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knowledge data

Incorporating known physics and mathematical structure

Adam Thorpe, UT Austin



Basis-to-basis operator learning
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Function Encoders Basis-to-Basis
Operator Learning

Inverse Neural Operators



?

Existing transfer approaches
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Meta-Learning 
Chelsea Finn, Pieter Abbeel, Sergey Levine. 

(2017). Model-Agnostic Meta-Learning for Fast 
Adaptation of Deep Networks.

Imitation Learning
O’Neill, A., Rehman, A., Maddukuri, A., Gupta, A., 

Padalkar, A., Lee, A., ... & Chen, M. (2024). Open X-
Embodiment: Robotic Learning Datasets and RT-X 

Models

Transformers
Ashish Vaswani, et. al. (2017). Attention is All you Need. 

D. Celestini, D. Gammelli, T. Guffanti, S. D'Amico, E. 
Capello and M. Pavone. (2024). Transformer-Based 

Model Predictive Control: Trajectory Optimization via 
Sequence Modeling

SVMs Ridge RegressionGPsDensity Estimation

Hilbert Space Representations

Kernel PCA

guarantees efficientinterpretable
Adam Thorpe, UT Austin



Prior work: kernel-based stochastic optimal control
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Intractable Optimal Control Problem

(unknown dynamics/disturbance)

kernel-based reformulation

Data Kernel Representation Linear Program≈

Prior Physics Knowledge

approximate solution

Approximate Policy: 

෍

𝑖=1

𝑚

𝛼𝑖 𝑥 𝑘(𝑢𝑖 ,⋅)

Thorpe, A., Lew, T., Oishi, M. & Pavone, M. (2022). Data-Driven Chance Constrained Control using Kernel Distribution Embeddings.  L4DC

guaranteesoffline training fast inference

Neural Networks

uncertain mass
unknown disturbance

unknown dynamics
obstacle

obstacle
data complexity least squares structure

Kernel Methods

scales with the 
amount of data

we want the best 
of both worlds



Function encoders: combining neural networks and Hilbert spaces
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Basis:

Representation:

1

𝑥

𝑥2

𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

1 𝑥 𝑥2

𝑎 𝑏 𝑐

simple polynomial example

Problem: How can we represent Hilbert spaces?

𝑔1

𝑔2

𝑔3

𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝑘

𝛼1 𝛼2 𝛼3 ⋯ 𝛼𝑘

𝑓 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

function encoders

neural network
basis functions

coefficients

Adam Thorpe, UT Austin



Breaking function encoders down: offline training, online inference
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∇𝜃𝐿

∇𝜃𝐿

∇𝜃𝐿

𝑔1

𝑔2

𝑔3

Offline Training
learn the basis functions 

Online Inference

𝑔1

𝑔2

𝑔3

መ𝑓𝑛𝑒𝑤 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

𝛼1
𝛼2

𝛼3

compute the coefficients 𝛼
least squares

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.



Offline Training: Training neural network basis functions
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𝑓𝑛

𝑓3

𝑓2

𝑓1

offline training data

1

𝑁𝑚
෍

𝑛=1

𝑁

෍

𝑖=1

𝑚

𝑓𝑛(𝑥𝑖) − መ𝑓𝑛(𝑥𝑖)
2

MSE loss

backpropagate

መ𝑓1, … , መ𝑓𝑛

∇𝜃𝐿

least squares

basis NNs

coefficients estimate

መ𝑓𝑛 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)

𝑔𝑗

estimate

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.

can be used as a drop-in 
replacement for a 
standard neural network

(e.g. trajectories in different 
weather conditions)



Online Inference: Computing coefficients for a new function
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• efficient least squares computation
• no network retraining or fine-tuning
• interpretable via basis functions

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces.

መ𝑓𝑛𝑒𝑤 𝑥 =෍

𝑗=1

𝑘

𝛼𝑗𝑔𝑗(𝑥 ∣ 𝜃𝑗)coefficients estimate

least squares estimate

❆

basis NNs

𝑔𝑗

𝑓𝑛𝑒𝑤

online data

(unseen, mixed conditions)

learned

⋯



Function encoders enable transfer beyond the training data
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Using the properties of the Hilbert space for transfer

inside the training data outside the training data

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝜇 1 − 𝑥2

2 𝑥2 − 𝑥1

𝜇 = 0.1 𝜇 = 1.0 𝜇 = 2.0 𝜇 = 3.0

true
estimated

training data 𝛼2training data 𝛼1 interpolation in the convex 
hull of 𝛼1 and 𝛼2

Van der Pol oscillator:

𝜇 = 4.0

extrapolation outside the 
convex hull

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2024). Zero-shot transfer of neural ODEs. NeurIPS



A geometric characterization of transfer
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training data

interpolation in the 
convex hull

extrapolation to the 
linear span

extrapolation to the 
Hilbert space

Adam Thorpe, UT Austin



A very simple transfer test 
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How well do existing approaches transfer?
training functions functions in the convex hull

function encoder

transformer

MAML

oracle

gradient steps

L2
 e

rr
or

gradient steps

function encoder

quadratic

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces. ICML

MAML

trans.

functions in the linear span

gradient steps

function encoder

scaled quadratic

≈1000x worse!

trans.

MAML

autoencoder

functions in the Hilbert space

gradient steps

function encoder

cubic

MAML
trans.

indicates partial transfer



Different transfer applications
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Image Classification

Ingebrand, T., Thorpe, A. J., & Topcu, U. (2025). Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces. ICML

Pose Estimation

Dynamics Prediction
Trai n Test

L2
 e

rr
or

gradient steps

MAML

function encoders

lower is better

gradient steps

L2
 e

rr
or

function encoders

lower is betterhigher is better

gradient steps

function encoders

ac
cu

ra
cy



Basis-to-basis operator learning

16

Function Encoders Basis-to-Basis
Operator Learning

Inverse Neural Operators



O'Leary-Roseberry, T., Chen, P., Villa, U., & Ghattas, O. 

(2024). Derivative-informed neural operator: an efficient 
framework for high-dimensional parametric derivative learning

DINO

Neural operator learning: function to function maps
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Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). 

Learning nonlinear operators via DeepONet based on the universal 
approximation theorem of operators.

DeepONet
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., 

Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for 
parametric partial differential equations.

Fourier Neural Operators

Main challenge:

DeepONet & FNO require the input 
data to be on a fixed grid or mesh

Adam Thorpe, UT Austin

Bhan, L., Shi, Y., & Krstic, M. (2023). Neural operators for 
bypassing gain and control computations in PDE backstepping

PDE Control



Basis-to-basis operator learning (B2B)
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Learned Input Basis Learned Output Basis

Given: input-output pairs of transformations (𝑓, 𝑇𝑓)
Goal: approximate 𝑇:ℱ → ℋ

𝑇

Operator

𝑇 𝛼 = 𝛽

𝛼 𝛽𝑇𝛼 = 𝛽

linear nonlinear

Ingebrand, T., Thorpe, A. J., Goswami, S., Kumar, K., & Topcu, U. (2025). Basis-to-basis operator learning using function encoders. CMAME



Basis-to-basis variants
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𝛼1
𝛼2
⋮
𝛼𝑘

𝛽1
𝛽2
⋮
𝛽𝑘

B2B (linear)B2B (nonlinear)

𝑇11 𝑇12 ⋯ 𝑇1𝑘
𝑇21 𝑇22 ⋯ 𝑇2𝑘
⋮ ⋮ ⋱ ⋮
𝑇𝑘1 𝑇𝑘2 ⋯ 𝑇𝑘𝑘

𝛼1
𝛼2
⋮
𝛼𝑘

𝛽1
𝛽2
⋮
𝛽𝑘

Singular Value Decomposition Eigen-decomposition

Ingebrand, T., Thorpe, A. J., Goswami, S., Kumar, K., & Topcu, U. (2025). Basis-to-basis operator learning using function encoders. CMAME



An illustrative linear example: derivative & antiderivative

te
st

 e
rr

or

te
st

 e
rr

or

derivative operator antiderivative operator

gradient stepsgradient steps

POD DeepONet

DeepONet

SVD

DeepONet 2-stage

B2B (proposed)

B2B (proposed)ED

• extrapolates to the linear span
• maintains accuracy, even when 

the measurement locations change

varying sensor locations:

B2B 20

𝑑𝑠(𝑥)

𝑑𝑥
= 𝑢 𝑥 , 𝑇𝑢 𝑥 = 𝑠 𝑥 = 0 + න

0

𝑥

𝑢 𝑡 𝑑𝑡𝑠 0 = 0,

lower is better lower is better



A nonlinear example of basis-to-basis for PDE modeling
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(output function) ground truth(input function)

B2B

DeepONet

error

Modeling the solution of partial differential equations

loading function displacement

B2B has lower error, 
and doesn’t rely on a 
fixed grid or mesh.

SVD

B2B (ours)

DeepONet
POD DeepONet

buckling

∇ ⋅ 𝜎 + 𝑓 𝒙 = 0, 𝒙 = 𝑥, 𝑦
𝑢, 𝑣 = 0, ∀𝑥 = 0

input function

Neural operators model the entire solution, not just one instance!



L-shaped 2D Darcy flow
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𝑥 = 𝑥, 𝑦 ∈ Ω ≔ 0,1 2 × 0.5,1 2,∇ ⋅ 𝑘 𝑥 ∇𝑢 𝑥 + 𝑓 𝑥 = 0,

𝑢 𝑥 = 0, 𝑥 ∈ 𝜕Ω

B2B

DeepONet

two dimensions of the input function output

output

ground truth
absolute error

absolute error

0.5

0

B2B demonstrates better 
accuracy and lower variance



Quantitative results
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our proposed approaches

B2B outperforms DeepONet 
on several PDE benchmarks



Basis-to-basis operator learning
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Function Encoders Basis-to-Basis
Operator Learning

Inverse Neural Operators



Inverse neural operators
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forward operator

Inverse problem: given 𝑇𝑓, estimate 𝑓

inverse operator

Given: input-output pairs of transformations (𝑓, 𝑇𝑓)
Goal: approximate 𝑇:ℱ → ℋ

so what’s the problem?



existence

uniqueness

ill-conditioning

?

Inverse maps are ill-posed

26

distributions 
over inputs

input space output space

requires us to reason over probability distributions

The probabilistic approach:



Inverse neural operators (using B2B)
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Learned Input Basis Learned Output Basis

𝑇

Operator

𝑇 𝛼 = 𝛽

Problem: compute 𝑇−1 such that 𝛼 ∼ 𝑇−1 𝛽

Recall:

𝛼 𝛽𝑇𝛼 = 𝛽

linear nonlinear



𝑧 ∼ 𝒩(𝜇, Σ)

sampledobserved output

Invertible networks

28

Encoder:

Decoder:

latent representation

Using conditional variational autoencoders to model the inverse map 

distribution

(𝛼, 𝛽) 𝑧

(𝛽, 𝑧) 𝛼



Operator learning & inverse problems
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Neural operator learning represents a new frontier in learning and autonomy

“inferring causes from effects”

forward problem

controller trajectory

inverse problem (control)

trajectory controller

basis-to-basis inverse operator learning

𝑇𝑓

𝑇−1𝑓

Adam Thorpe, UT Austin

Bellman operator: 𝑇𝑓 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 ℙ ⋅ 𝑥, 𝑢 , 𝑉𝑓

We can’t focus on solving single instances, we 
need global solutions for adaptation & transfer 

scientific ML engineering design modeling complex systems



Takeaways

30

• We provide a novel operator learning approach 
that combines basis learning with neural operator learning

• Avoids a key limitation, which is the need for a fixed grid or mesh
• Outperforms existing approaches on PDE benchmarks

Questions?

adam.thorpe@austin.utexas.edu
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