

Basis-to-Basis Operator Learning

A Paradigm for Scalable and Interpretable Operator Learning on Hilbert Spaces

Adam Thorpe, Tyler Ingebrand, Somdatta Goswami, Krishna Kumar, Ufuk Topcu

We need algorithms that can adapt & transfer...

...across domains

...across platforms

What do I mean by adaptation and transfer?

Adaptation updating or refining learned models using new data

Transfer leveraging knowledge from diverse sources

Moving beyond black-box learning

Incorporating known physics and mathematical structure

Basis-to-basis operator learning

Existing transfer approaches

Meta-Learning

Chelsea Finn, Pieter Abbeel, Sergey Levine. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

Imitation Learning

O'Neill, A., Rehman, A., Maddukuri, A., Gupta, A., Padalkar, A., Lee, A., ... & Chen, M. (2024). Open X-Embodiment: Robotic Learning Datasets and RT-X Models

Transformers

Ashish Vaswani, et. al. (2017). Attention is All you Need.

D. Celestini, D. Gammelli, T. Guffanti, S. D'Amico, E. Capello and M. Pavone. (2024). Transformer-Based Model Predictive Control: Trajectory Optimization via Sequence Modeling

guarantees

Prior work: kernel-based stochastic optimal control

Function encoders: combining neural networks and Hilbert spaces

Problem: How can we represent Hilbert spaces?

simple polynomial example

Basis:

 $\{1 \quad x \quad x^2\}$

Representation:

 $\begin{bmatrix} a & b & c \end{bmatrix}$

function encoders

$$\{g_1 \quad g_2 \quad g_3 \quad \cdots \quad g_k\}$$

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_k \end{bmatrix}$$

Breaking function encoders down: offline training, online inference

Offline Training

learn the basis functions

Online Inference

compute the coefficients α

Offline Training: Training neural network basis functions

Online Inference: Computing coefficients for a new function

Function encoders enable transfer beyond the training data

Using the properties of the Hilbert space for transfer

Van der Pol oscillator:

inside the training data

outside the training data

A geometric characterization of transfer

A very simple transfer test

How well do existing approaches transfer?

Different transfer applications

Basis-to-basis operator learning

Neural operator learning: function to function maps

Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators.

DINO

O'Leary-Roseberry, T., Chen, P., Villa, U., & Ghattas, O. (2024). Derivative-informed neural operator: an efficient framework for high-dimensional parametric derivative learning

PDE Control

Bhan, L., Shi, Y., & Krstic, M. (2023). Neural operators for bypassing gain and control computations in PDE backstepping

Fourier Neural Operators

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator for parametric partial differential equations.

Main challenge:

DeepONet & FNO require the input data to be on a **fixed grid** or **mesh**

Basis-to-basis operator learning (B2B)

Given: input-output pairs of transformations (f, Tf)

Goal: approximate $T: \mathcal{F} \to \mathcal{H}$

Basis-to-basis variants

B2B (nonlinear)

Singular Value Decomposition

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix} \rightarrow \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1k} \\ T_{21} & T_{22} & \cdots & T_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ T_{k1} & T_{k2} & \cdots & T_{kk} \end{bmatrix} \rightarrow \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}$$

B2B (linear)

Eigen-decomposition

An illustrative linear example: derivative & antiderivative

A nonlinear example of basis-to-basis for PDE modeling

Modeling the solution of partial differential equations

B2B has lower error, and doesn't rely on a fixed grid or mesh.

Neural operators model the **entire** solution, not just one instance!

L-shaped 2D Darcy flow

$$\nabla \cdot (k(x)\nabla u(x)) + f(x) = 0, \quad x = (x, y) \in \Omega := (0, 1)^2 \times [0.5, 1)^2,$$
$$u(x) = 0, \quad x \in \partial \Omega$$

Quantitative results

our proposed approaches

Dataset	Function encoders			DeepONet		
	B2B	SVD	Eigen	Vanilla	POD	Two-stage
Anti-derivative	$1.06e-02 \pm 1.62e-02$	$1.31e+00 \pm 1.04e+00$	$2.02e+00 \pm 2.63e+00$	$4.48e-01 \pm 2.14e-01$	$1.96e+03 \pm 1.34e+02$	$2.20e-01 \pm 7.95e-02$
Derivative	$8.63e-04 \pm 6.60e-04$	$3.33e-02 \pm 2.03e-02$	$4.05e-03 \pm 3.45e-03$	$3.68e-03 \pm 2.57e-03$	$9.84e+00 \pm 6.27e-01$	$2.33e-03 \pm 1.01e-03$
1D Darcy flow	$1.74e-05 \pm 4.92e-06$	$8.90e-04 \pm 8.03e-05$	_	$4.47e - 05 \pm 8.94e - 06$	$3.35e-05 \pm 8.79e-06$	$2.59e-04 \pm 8.43e-05$
2D Darcy Flow	$5.30e-03 \pm 1.19e-03$	$2.89e-02 \pm 2.31e-03$	_	$2.68e-02 \pm 2.77e-03$	$2.50e-02 \pm 1.64e-03$	$1.33e-02 \pm 1.55e-03$
Elastic plate	$6.30e-05 \pm 5.59e-05$	$1.03e-01 \pm 1.83e-02$	_	$4.66e-04 \pm 8.16e-04$	$5.59e-04 \pm 1.15e-03$	_
Parameterized heat	$4.07e-04 \pm 2.86e-04^{a}$	$2.27e-01 \pm 2.35e-02$	_	$6.00e-04 \pm 1.09e-03$	$8.88e-01 \pm 1.15e-01$	_
equation						
Burger's equation	$5.07e-04 \pm 1.93e-04$	$1.01e-01 \pm 1.16e-02$	_	$2.16e-03 \pm 5.59e-04$	$1.94e+00 \pm 1.76e-01$	$2.03e+00 \pm 1.78e-01$

^a While the mean of prediction errors for B2B is lower than DeepONet for the parameterized heat equation dataset, the median is higher

B2B outperforms DeepONet on several PDE benchmarks

Basis-to-basis operator learning

Inverse neural operators

Given: input-output pairs of transformations (f, Tf)

Goal: approximate $T: \mathcal{F} \to \mathcal{H}$

Inverse problem: given Tf, estimate f

so what's the problem?

Inverse maps are ill-posed

The probabilistic approach:

requires us to reason over probability distributions

Inverse neural operators (using B2B)

Problem: compute T^{-1} such that $\alpha \sim T^{-1}(\beta)$

linear

nonlinear

Invertible networks

Using conditional variational autoencoders to model the inverse map

Operator learning & inverse problems

Neural operator learning represents a **new frontier in learning and autonomy**

We can't focus on solving single instances, we need **global** solutions for adaptation & transfer

Bellman operator: $Tf(x, u) = R(x, u) + \gamma \langle \mathbb{P}(\cdot | x, u), V_f \rangle$

"inferring causes from effects"

Adam Thorpe, UT Austin 29

engineering design

Takeaways

- We provide a novel operator learning approach that combines basis learning with neural operator learning
- Avoids a key limitation, which is the need for a fixed grid or mesh
- Outperforms existing approaches on PDE benchmarks

Questions?

adam.thorpe@austin.utexas.edu