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SAN FRANCISCO — Uber’s robotic vehicle project was not living up to 
expectations months before a self-driving car operated by the company 
struck and killed a woman in Tempe, Ariz.

Uber’s Self-Driving Cars Were Struggli
Before Arizona Crash

SAN FRANCISCO — In one video, a Tesla tries to drive down some 
light-rail tracks. In another, a Tesla fails to stop for a pedestrian in a 
crosswalk. And at one point, the most advanced driver-assistance 
product available to consumers appears to slam into a bike lane 
bollard at 11 mph.

‘Full Self-Driving’ clips show owner
of Teslas fighting for control, and 
experts see deep flaws
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Motivation
▶ Modern systems operate in uncertain environments.

▶ Must deal with strict operating constraints, safety
constraints, and humans.

▶ Unknown dynamics & stochastic processes.

▶ Complex mechanical systems & dynamics.

▶ Unforeseen human factors.

Images courtesy of: NASA, The National Archives, and Ford Motor Company
from USA, CC BY 2.0, via Wikimedia Commons
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Data-Driven vs. Model-Based Control
▶ Autonomy will only become more prevalent.

▶ Motivates the need for data-driven techniques that enable control and assess safety.

Model-Based

Known Dynamics & Disturbances
vs.

Unknown Stochastic Processes

Data-Driven
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Stochastic Optimal Control
▶ How do we solve data-driven stochastic optimal

control problems while accounting for real-world
uncertainty?

min
π

E[g(x)]

s.t. x ∼ Q(· | x0, u)
u ∼ π(· | x0)
P(x ∈ F ) ≥ 1− δ

Unknown

▶ Intractable since stochastic kernel is unknown – difficult!

▶ Model-based often limited to LTI, Gaussian disturbances.

▶ Must provide assurances of safety.

▶ Must operate within constraints.
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Our Proposed Approach
▶ Project data from Q into a high-dimensional

function space known as a reproducing kernel
Hilbert space (RKHS) H .

Reproducing property: f (x) = ⟨f , k(x , ·)⟩H

▶ Examples of Hilbert spaces: Rn, L2, ℓ2

▶ Kernel embeddings of distributions:

E[f (x)] = ⟨f ,m⟩H

Advantages

▶ Hilbert spaces are a natural fit for many controls problems.

▶ Nonparametric, i.e. few assumptions.

▶ Mathematically rigorous.
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Thesis Contribution
1. I have developed data-driven control techniques using the theory of Hilbert spaces.

1.1 Amenable to systems with nonlinear dynamics & arbitrary stochastic disturbances.
1.2 Can solve stochastic optimal control problems as a linear program.

2. I have developed techniques to solve approximate stochastic reachability problems.

2.1 Amenable to several stochastic reachability problems, including first-hitting time problem.
2.2 I have developed finite sample bounds for kernel-based techniques.

3. I have developed techniques for out-of-sample generalization.

3.1 Incorporating prior knowledge of the system dynamics or its properties.
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Grünewälder, S. (2012)

Nishiyama, Y. (2012)

Berlinet, A. (2011)

Song, L. (2010)

Song, L. (2009)

Learning Methods
Mauroy, A. (2020)

Williams, C. K. (2006)

Infinite LPs
Martinelli, A. (2022)

Martinelli, A. (2022)

RKHS Control
Nemmour, Y. (2022)

Vien, N. A. (2016)

Lever, G. (2015)



10/40

Outline

Stochastic Optimal Control Stochastic Reachability Using Prior Knowledge
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Stochastic Optimal Control

1Here x = {x1, . . . , xN} and u = {u0, . . . , uN−1}, policy is open loop.

min
π

E[g(x)]

s.t. x ∼ Q(· | x0, u)
u ∼ π(· | x0)
P(x ∈ F ) ≥ 1− δ

Unknown

▶ Intractable since stochastic kernel is unknown.

▶ Data taken i.i.d. from Q is available.

▶ Difficult since we seek a stochastic policy.

▶ Solution is non-trivial.

Challenges

▶ Computing expectations and probabilities.

▶ Policy synthesis.
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Kernel Embeddings of Distributions
▶ Expectations (integrals) are linear operators.

▶ For g ∈ H , the Riesz theorem guarantees the existence
of the element m(x0, u) ∈ H called the kernel distribution
embedding, such that

⟨g ,m(x0, u)⟩H = Ex∼Q(·|x0,u)[g(x)] =

∫
XN

g(x)Q(dx | x0, u).

▶ Empirical estimate m̂(x0, u) of m(x0, u) using data,

Given: S = {(x10 , u1, x1), . . . , (xM0 , uM , xM)}, x i ∼ Q(· | x i0, ui )

Solve: m̂ = argmin
f∈V

1

2λ

M∑
i=1

∥k(x i , ·)− f (x i0, u
i )∥2H +

1

2
∥f ∥2V

Main Idea
Step 1: Embed Q in an RKHS & estimate using data.

Step 2: Embed policy π in an RKHS.
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Data-Driven Stochastic Optimal Control Problem
▶ Write P(x ∈ F ) as E[1F (x)], i.e. expectation of indicator function.

▶ Assume cost and constraints are in RKHS H and
∫
XN g(x)Q(dx | x0, u) < ∞.

min
p(x0)∈U

⟨⟨g , m̂(x0, ·)⟩H , p(x0)⟩U

s.t. ⟨⟨1F , m̂(x0, ·)⟩H , p(x0)⟩U ≥ 1− δ

Step 1: Embed Q in an RKHS H & estimate using data,

⟨g , m̂(x0, u)⟩H ≈
∫
XN

g(x)Q(dx | x0, u).

Step 2: Embed policy π in an RKHS U ,

p(x0) =
P∑
j=1

γj(x0)l(ũ
j , ·).

R coefficients

Finite support

▶ RKHS U may be infinite-dimensional.

▶ We search in a finite subspace.
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Structure of the Policy
▶ Optimal stochastic policy may be mixed.

▶ Mixed policy may have lower expected cost.
▶ Means we choose between controls with certain likelihood.

▶ Coefficients γ(x0) in probability simplex,

S = {γ(x) ∈ RP | 1⊤γ(x) = 1, 0 ⪯ γ(x)}

▶ Solution may be on an “edge”
of the simplex, i.e. mixed.

40% 60%
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Approximate Problem

min
γ(x0)∈RP

g⊤WΨΥ⊤k(x0, ·)γ(x0)

s.t. 1⊤F WΨΥ⊤k(x0, ·)γ(x0) ≥ 1− δ

1⊤γ(x0) = 1

0 ⪯ γ(x0)

▶ Approximate problem is an LP.
▶ Can be solved efficiently using off-the-shelf solvers.

▶ E.g. interior point or simplex algorithms.

However, ...

▶ One potential drawback:
Must strategically choose support ũj .

min
x

c⊤x

s.t. Ax ≥ 1− δ

1⊤x = 1

0 ⪯ x
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Strategic Sampling
▶ How do we choose controls ũj?

p(x) =
P∑
j=1

γj(x0)l(ũ
j , ·)

Finite support

▶ Näıve sampling insufficient.
▶ May fail to generate meaningful control sequences.

▶ Strategic sampling needed in practice, e.g. using:
▶ PD controller.
▶ Motion primitives.

▶ We obtain good candidate controls.

UN

Strategic

Näıve
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Demonstration

Scenario
Quadrotor carrying uncertain payload
around obstacles in uncertain conditions.

xt+1 = Axt +
1

m
But − αd(xt) + wt

▶ Uncertain payload mass.

▶ Windy conditions & nonlinear drift.

▶ Must choose between safety & efficiency.
▶ Narrow corridor less safe.
▶ Longer path less efficient.

▶ Solution is a mixed policy.
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Results

1Recall: chance constraint P(x ∈ F ) ≥ 1− δ

▶ Sample size: M,P = 2,500

▶ Time horizon: N = 15

▶ Generating sample: ≈ 5s

▶ Generating controls: ≈ 5s

▶ Computing LP: ≈ 100 ms

▶ Scales with sample size: O(M3)

▶ Higher δ leads to a policy that has a higher chance of choosing “risky” middle corridor.

Tolerable probability of failure δ 0.05 0.20
Empirical probability of failure 0.029 0.039

— Satisfies constraints.

— Does not satisfy constraints.
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Comparison with Ono et. al. (2016)

▶ Boole’s inequality.

▶ Lagrangian relaxation.

▶ Difficult dynamics:

xt+1 = Axt+
1

m
But−αd(xt)+wt

▶ Parameters m, α are uncertain.

▶ d(xt) is nonlinear drift term.

▶ Existing methods may not satisfy chance constraints.

Our Approach Ono 2016
Tolerable probability of failure δ 0.05 0.05
Empirical probability of failure 0.029 0.102

— Satisfies constraints.

— Does not satisfy constraints.
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Gradient Descent in an RKHS
▶ Consider data-driven problem with convex cost g :

min
u∈U

⟨⟨g , m̂(x0, ·)⟩H , l(u, ·)⟩U

Challenge

▶ Problem is generally non-convex if kernel l is non-convex.

▶ Use partial derivative reproducing property of RKHS,

∂1h(u) = ⟨h, ∂1,0l(u, ·)⟩U .

▶ Compute gradient of approx. expected cost w/rt. u as,

⟨⟨g , m̂(x0, ·)⟩H , ∂1,0l(u, ·)⟩U .

▶ Does not rely upon a sample-based approach.

given estimate m̂, initial guess u0
repeat

∆un ← ⟨g⊤WΨk(x0, ·), ∂1,0l(un, ·)⟩U
choose step size η
un+1 ← un − η∆un

until stopping criterion satisfied
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Demonstration

Scenario
Nonholonomic vehicle tracking
a target trajectory (waypoints).

ẋ1 = u1 sin(x3)

ẋ2 = u1 cos(x3)

ẋ3 = u2

xt+1 = f (xt , ut ,wt)

▶ Unconstrained.

▶ Stochastic kernel Q is a representation of f (xt , ut ,wt).
(dynamics over a single time step)
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Results

▶ Sample size: M = 3,000, P = 210

▶ Time horizon: N = 20

▶ Generating sample: ≈ 5s

▶ Generating controls: ≈ 5s

▶ Computing LP: ≈ 100 ms

▶ Computing GD Solution: ≈ 6 s
▶ Step size: 0.1
▶ Iterations: 100

▶ Gradient solution performs better,
but with higher computational cost.

▶ Tradeoff between computation time & accuracy.

▶ Other gradient-based convex optimization techniques may be applicable.
▶ E.g. Newton-Raphson, interior point.
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Dynamic Programming

1Note that Q here is over a single time step.

▶ Consider the following optimization problem,

min
π∈Π

E
[
gN(xN) +

N−1∑
t=0

gt(xt , ut)

]
▶ Define the value functions V ∗t : X → R, t = 0, 1, . . . ,N − 1,

V ∗t (x) = min
πt

∫
U
gt(x , u) +

∫
X
V ∗t+1(y)Q(dy | x , u)πt(du | x)

initialized with V ∗N(x) = gN(x).

▶ Solve for π backwards in time using dynamic programming.

Challenge

▶ Stochastic kernel Q is unknown.

▶ Curse of dimensionality.
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Approximate Dynamic Programming Using Kernels
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Step 1: Embed Q in an RKHS & estimate using data,

⟨Ṽ ∗t+1, m̂(x , u)⟩H ≈
∫
X
Ṽ ∗t+1(y)Q(dy | x , u).

Step 2: Represent policy π as embeddings in an RKHS,

pt(x) =
P∑
j=1

γj(x)l(ũj , ·).

Step 3: Solve for π = {p0, p1, . . . , pN−1} by recursively
approximating & substituting value functions,

Ṽ ∗N(x) = gN(x)

Ṽ ∗t (x) = min
γ(x)∈RP

⟨gt(x , ·), pt(x)⟩U + ⟨⟨Ṽ ∗t+1, m̂(x , ·)⟩H , pt(x)⟩U

▶ Can solve as an LP.

▶ Complexity scales with sample size and is generally O(M3),
not with dimensionality of data.
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Recap

▶ We have demonstrated two techniques for solving
data-driven stochastic optimal control problems.

1. Compute a policy as a linear program (LP).
2. Kernel gradient-based optimization.

▶ These techniques are amenable to:
▶ Constrained & unconstrained optimization problems.
▶ Dynamic programming.
▶ Systems with arbitrary stochastic disturbances.
▶ Computing mixed policies.
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Outline

Stochastic Optimal Control Stochastic Reachability Using Prior Knowledge
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Stochastic Reachability (Terminal-Hitting Time Problem)
▶ Safety probabilities: the likelihood that a system following a

fixed policy π = {π0, π1, . . . πN−1} ∈ Π will reach a target set
T at t = N while remaining within a safe set K for all t < N.

rπx0(K, T ) = P(xN ∈ T ∧ xt ∈ K,∀t < N) = Eπ
x0

[(N−1∏
t=0

1K(xt)

)
1T (xN)

]
Multiplicative cost

▶ Define the value functions V π
t : X → R, t = 0, 1, . . . ,N − 1,

V π
N (x) = 1T (x)

V π
t (x) = 1K(x)

∫
U

∫
X
V π
t+1(y)Q(dy | x , u)πt(du | x)

⇓
V π
0 (x0) = rπx0(K, T )

▶ Goal: find π∗ = {π∗0 , π∗1 , . . . , π∗N−1} ∈ Π such that ∀x ∈ X ,

π∗t = arg sup
πt

1K(x)

∫
U

∫
X
V ∗t+1(y)Q(dy | x , u)πt(du | x)

T

K
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Approximate Stochastic Reachability
▶ Can use similar procedure as before:

Step 1: Embed Q in an RKHS & estimate using data,

⟨Ṽ ∗t+1, m̂(x , u)⟩H ≈
∫
X
Ṽ ∗t+1(y)Q(dy | x , u).

Step 2: Represent policy π∗ as embeddings in an RKHS,

p∗t (x) =
P∑
j=1

γj(x)l(ũj , ·).

Step 3: Solve for p∗0 , p
∗
1 , . . . , p

∗
N−1 by recursively

approximating & substituting value functions,

p∗t (x) = arg sup
pt(x)∈U

1K(x)⟨⟨Ṽ ∗t+1, m̂(x , ·)⟩H , pt(x)⟩U

s.t. 1⊤γ(x) = 1

0 ⪯ γ(x)

▶ Can solve as an LP.

T

K
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Structure of the Policy
▶ Optimal stochastic policy is deterministic.

▶ Deterministic since problem is unconstrained.
▶ Means policy assigns probability mass one to a single input.

▶ Coefficients γ(x) in probability simplex S .

▶ Solution is at a “vertex”, i.e. deterministic.

▶ Can be solved efficiently via the Lagrangian dual.

100%
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Demonstration
▶ Point mass system (double integrator).

▶ Chosen for validation.

▶ Goal is to stay within a small region around the origin.

rπx0(K, T ) = P(xN ∈ T ∧ xt ∈ K,∀t < N)

X\K
Map initial conditions to

safety probabilities.
Compute maximal policy.

xt+1 =

[
1 Ts

0 1

]
xt +

[
T 2
s /2
Ts

]
ut + wt



31/40

Results Ours Dyn. Prog. “Ground Truth”

Absolute error.

▶ Sample size: M = 2,500, P = 1,000

▶ Time horizon: N = 15

▶ Generating sample: ≈ 1s

▶ Computing LP: ≈ 100 ms

▶ Scales with sample size: O(M3)

▶ Computing Dyn. Prog.: ≈ 30 s

▶ Dynamic program scales with grid size.

▶ Maximum absolute error: ≈ 10%

▶ Warmer colors denote higher safety probability.

▶ Maximally safe policy has better performance.

▶ Can also be used for the first-hitting time problem.
▶ Traditionally very difficult to solve.
▶ Probabilistic safe sets non-convex, meaning techniques using

polytopic representations may fail.
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Outline

Stochastic Optimal Control Stochastic Reachability Using Prior Knowledge



33/40

Existing Challenges

▶ Quality of solution depends on data.
▶ Finite samples inherently carry limited information.
▶ May not cover entire state space.

▶ Out-of-distribution data.
▶ Training data does not match operating conditions.

▶ Challenges apply to all data-driven control.

▶ How do we generalize to larger regions of the state space?

▶ How do we handle distribution shifts?

Sampled Area
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Out-Of-Sample Generalization

▶ Sample size: M = 2,500

▶ Time horizon: N = 40

▶ Computing LP: ≈ 150 ms

▶ Nonlinear system.

▶ Nonholonomic dynamics.

▶ Non-Gaussian disturbance.

▶ Quality of solution depends on data.

m̂ = argmin
f∈V

1

2λ

M∑
i=1

∥k(y i , ·)− f (x i , ui )∥2H +
1

2
∥f ∥2V

Penalty term
▶ Penalizes solutions far from 0.

▶ Outside region we have data, control exhibits poor performance.

Outside sampled region
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Biased Regularization
▶ Given:

▶ Known approximate dynamics: xt+1 = f̃ (xt , ut)
▶ Sample from true dynamics:

S = {(x1, u1, y 1), . . . , (xM , uM , yM)}, y i ∼ Q(· | x i , ui )

▶ Compute:
E[g(y)− g(f̃ (x , u))] + g(f̃ (x , u))

Empirically estimate using data.

▶ Biased regularization:

m̂ = argmin
f∈V

1

2λ

M∑
i=1

∥k(y i , ·)− f (x i , ui )∥2H +
1

2
∥f ∥2V − ⟨f , f0⟩V

Bias term

▶ Define f0(x , u) = k(f̃ (x , u), ·).
▶ Penalizes solutions far from f0.
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Comparison of Biased vs. Unbiased Regression

▶ Main idea: Use approximate dynamics as our regression baseline.

▶ Much better generalization performance with smaller sample size.

Outside sampled region.

▶ Sample size: M = 100

▶ Time horizon: N = 60

▶ Generating sample: ≈ 1s

▶ Computing LP: ≈ 10 ms

▶ Can we use prior knowledge to improve data-driven control performance?

▶ We often have at least approximate dynamical knowledge of the system.
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Exploiting Known System Properties

▶ Sample size: M = 100

▶ Time horizon: N = 40

▶ Computing LP: ≈ 10 ms

▶ Main idea: Collect sample in body frame and transform the sample as the system evolves.

▶ Much better performance with smaller sample size.

▶ Uses physics-informed learning, side information.

Sample in body frame

▶ Can we use known properties of the dynamics to improve data-driven control performance?

▶ E.g. symmetry, knowledge of the vector field, SE (n)-invariance.

▶ SE (n)-invariance: Dynamics are the same in all frames of reference.
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Out-Of-Distribution (OOD) Detection
▶ Given samples from two distributions P and Q, how can we determine if P and Q differ?

▶ Maximum mean discrepancy:

MMD2(P,Q) = ∥mP −mQ∥2H =

[
sup

∥f ∥H ≤1
(EP[f (X )]− EQ[f (Y )])

]2
▶ Compare the distance between empirical kernel distribution embeddings in an RKHS.

▶ Example: Gaussian & Laplacian distribution (same mean & variance).
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SOCKS: Stochastic Optimal Control using Kernel Methods
▶ Stochastic Optimal Control

▶ Dynamic Programming

▶ Stochastic Reachability

▶ Forward Reachability

▶ Written in Python.

▶ Several examples & benchmarks.

▶ Binder integration.

https://github.com/ajthor/socks

https://github.com/ajthor/socks
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Thank you!
Contact: ajthor@unm.edu

Code: https://github.com/ajthor/socks
SOCKS: Python Toolbox for Stochastic Optimal Control using Kernel Methods

This material is based upon work supported by the National Science Foundation under NSF Grant Number CNS-1836900. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.
This research was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories,
a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. The views expressed in this article do not necessarily represent the views of the U.S. Department of

Energy or the United States Government.

ajthor@unm.edu
https://github.com/ajthor/socks
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Finite Sample Bounds
▶ Finite sample bounds via bounded variation.

Theorem
For any value function Vt ∈ H , given δ/2 ∈ (0, 1), with probability 1− δ/2, the difference
between the true and empirical expectation of the value functions is bounded by:

|⟨Vt ,m(x , u)− m̂(x , u)⟩H | ≤ 2

√
tr(β⊤ΨΨ⊤β + 3

√
ρ2 log(2/δ)

2λ2M
(1)

▶ Outline of proof:

Step 1: Bound the worst-case difference between the true and empirical expectation.

Step 2: Use McDiarmid’s inequality & the matrix inversion lemma, and bound the
variation of changing a single observation by ρ/(λM), where ρ < ∞ is an upper bound on
the kernel.

Step 3: Use a symmetrization argument and a ghost sample (an independent copy of S),
and the definition of the dual norm in the RKHS.

Step 4: Then, via simple substitution, we obtain the bound in (1).
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Finite Sample Bounds (Continued)

1Note that better bounds have been developed in Li, et. al. (2022)
that show finite sample bounds of conditional embeddings and derive
a minimax optimal rate of O(M−1/2).

▶ Finite sample bounds via algorithmic stability.

▶ Bound the difference between risk & empirical risk:

R(m̂) =

∫
X
∥k(y , ·)− m̂(x , u)∥2H Q(dy | x , u)

RS(m̂) =
1

M

M∑
i=1

∥k(yi , ·)− m̂(xi , ui )∥2H + λ∥m̂∥2V

Theorem
The RLS algorithm has uniform stability α ≤ σ2ρ2/(2λM) with respect to the loss function
0 ≤ ∥k(y , ·)− m̂(x , u)∥2H ≤ ρ for all (x , u, y) ∈ Z and all sets S = ZM . For any M ≥ 1 and
any δ ∈ (0, 1), the following bounds hold with probability 1− δ of the random draw of the
sample S,

R(m̂) ≤ RS(m̂) +
σ2ρ2

λM
+

(
2σ2ρ2

λ
+ ρ

)√
log(1/δ)

2M
. (2)
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Embeddings of Distributions
▶ Given a kernel k : X × X → R, ∃ a corresponding RKHS H of functions from X to R.
▶ Expectations are linear in the function argument:

E[f (y)] =
∫
X
f (y)P(dy).

▶ Assuming f ∈ H , by the Riesz theorem, there exists an element m ∈ H such that

⟨f ,m⟩H =

〈
f ,

∫
X
k(y , ·)P(dy)

〉
H

=

∫
X
⟨f , k(y , ·)⟩H P(dy)

=

∫
X
f (y)P(dy)

▶ Kernel k must be measurable and bounded to ensure integral exists.

▶ Also applicable to conditional distributions, stochastic kernels.
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