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» Futuristic autonomous systems will create & operate under

excessive uncertainty.
» How do we operate in these kinds of environments? "
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Scenario:

» No knowledge of dynamics or
uncertainty.

» Data is available.

» How do we efficiently solve
data-driven stochastic optimal
control problems while
accounting for real-world
uncertainty?

» Complex mechanical systems.
» Complex environments.
» Humans.
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Proposed approach:

high-dimensional function space
known as a reproducing kernel

Hilbert space (RKHS).

» Can compute empirical
approximations of distributions
in an RKHS.

» Stochastic optimal control
problem can be viewed as an LP.
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Stochastic Optimal Control

Unknown
min  E[*(X) + £(U)] J
2’% st x~ Q(X | xp,u) 4
: u~m(U| x)
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» From Ono et al., 2016, we seek a stochastic policy.

?? » |ntractable since Q is unknown.

» Amenable to convexity and other properties.
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Related Work on Unconstrained Control
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\0_6 \\\704 \0_2\0 \\0_2 \\\0_4 \0_6 \ » Dynamic programming. » Constrained problems are
o » Nonlinear dynamics. more difficult.

» Very good performance.

» Low error vs. model-based. » Dual solution.

Thorpe, Oishi, " Stochastic Optimal Control via Hilbert Space Embeddings of Distributions,”

» Non-Gaussian disturbances.
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Kernel Approximation

1 1

> Given: dataset D = {(x',x§, u')}M, taken i.i.d. from Q.
> A kernel is a positive definite function, e.g.

_ 2 I
k(x,x") = exp <—|X§|> M
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Kernel Approximation

» Solution is a linear combination.

» Compute weights using a regularized-least squares problem:
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Kernel Approximation
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» Can approximate functions (and expectations) using reproducing property:
Exna( o f(X)] = (f, M(xo, u))
- - M
» To evaluate, we compute the weighted sum of kernel functions. O

> Related to mean component of GP(u,¥). NASA ULIREW MERico



RKHS Reformulation

LTY':‘) (p(x0), (m(xo, u), ) + £“)

s.t. {p(x0), <m(X0a U)a 10f><~~-><0§,_1></’\.’g03,>> >1-9

> Goal: compute M(xg, u) = m(xg, u), find p(xg).

Computational Challenge P _
> RKHS may be infinite-dimensional. plxo) =Y v(0)k(#,-)
Jj=1

§:§ » Thus, we search in a finite subspace. .
. ?? R Coefficients J

Finite support
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Step 1: Stochastic Kernel Approximation

Figure reproduced with permission from Thomas Lew
(thomas.lew@stanford.edu) NASA ULINEw MEXICO



Step 2: Stochastic Policy
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Structure of Policy

> Optimal stochastic policy is mixed (Ono, 2016).
» Means we choose between controls with a certain likelihood.

25%

P
plx) =Y ~i(x0)k(,)
2l o

75%
» Coefficients v(x) € R” in probability simplex.

7 = {7(x) €R” | 174(x0) = 1,0 = 7(x0)}

> Solution may be on an "edge” of the simplex, i.e. mixed.
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Sampling
» Dataset is key to obtain a good result.

» Naive sampling insufficient.
Naive Sampling

e

Strategic Sampling

Strategic Sampling
» Strategic sampling needed in practice.
» E.g. using a PD controller.

» We obtain controls which are good
candidates.
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Approximate RKHS Problem

min

L (WX, u), ) + £4)

(
> (M(xo

)7 1(’)f><~~

X(D,C\,il ><-/Ygoal>>

» Approximate problem is an LP.

>1-96

» Can solve using off-the-shelf solvers using interior point or simplex methods.

N
min ¢
st. Ax>1-90
1Tx=1
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Demonstration (Quadrotor with Uncertain Mass)

Scenario
Quadrotor carrying a payload around obstacles in windy conditions.

» Uncertain payload mass.
» Windy conditions. Nonlinear drift.
» Use point mass as first step for comparison.

» Going between obstacles has higher risk,

P’ < Ty Xgoal i.e. higher chance of collision.

- » Going around has higher cost.
» We expect a policy that mixes the two paths.
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Results

» Higher 0 leads to a policy that has
higher likelihood of choosing risky
middle corridor.

v

Sample size: M, P = 2500
Time horizon: N =15

v

A\

Generating controls: =~ 5s

v

Computing LP: ~ 100ms

v

Scales with sample size: O(M?3)

-

Satisfies constraints.
Does not satisfy constraints.

Tolerable probability of failure &

0.05

0.20

Empirical probability of failure

0.029

0.039

“riskier”
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Comparison with Ono et al., 2016 [— Satisfies constraints. }

— Does not satisfy constraints.

» Boole's inequality.
» Lagrangian relaxation.

» Bisection technique.

» Difficult dynamics:
Xt+1 = AXt + #But — Oéd(Xt) —+ W

Kernel Approach | Ono 2016
Tolerable probability of failure 0.05 0.05 T
Empirical probability of failure 0.029 0.102 S
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Advantages

» LP reformulation.
» Mixed policies.
» Accommodates:

> Arbitrary disturbances.
» Non-convex cost & constraints.

Caveats
» Dataset is key to obtaining a good result.
» Feasibility depends on data.

» Convergence to optimal policy is still under
investigation.
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Thank you!

Contact: ajthor@unm.edu

Code: https://github.com/ajthor/socks
SOCKS: Python toolbox for Stochastic Optimal Control using Kernel Methods

The NASA University Leadership initiative (Grant #80NSSC20MO0163) provided funds to assist the authors with their research,

but this article solely reflects the opinions and conclusions of its authors and not any NASA entity.
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ajthor@unm.edu
https://github.com/ajthor/socks

RKHS Embeddings

» Define a positive definite kernel function k : X x X — R.

» Moore-Aronszajn theorem: there exists a unique RKHS J# corresponding to k.
> Reproducing property: f(x) = (f, k(x,))
> Kernel trick: k(x,x") = (k(x, ), k(x',))
» Every f € JZ is a linear combination of kernel functions.

f= Za;k(x,-,-) f(x) = (f, k(x,)) = Za, Xi, X
» Riesz lemma: E[f(X)] is linear = 3m € J such that E[f(x)] = (f, m).
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. Using dataset D = {(x§, u’, x")}M,, estimate:
E[f(x)] = /X f(x)Q(dx | xo, u) = (f, M(xo, u)) = f—r(\ll\llT + /\/\/l/)fl\llk(xo7 I(u, ),
where f = [f(x1),..., f(xM)]T and W = [k(xg, ) (ut, ), ..., k(T 1w )]

- Given {#}7,,

Ble(] = | a(u)du ] x0) = (g.p(0)) = (& 33000 ) ).

where v(x0) € RP.

. Compute:

u~7r (+|x0) [EXNQ( |0, u)[f ]] - / / dX | X0, u)w(du | XO)
~ FT WU T 4 MD)W T k(x0, )v(x0)
= FIWK(0)Y(X0) o nen g



> We constrain 7(xo) to be in the probability simplex . = {x e R [1"x =1,0 < x}.
» LP can be solved easily, e.g. via interior-point or simplex methods.

» In unconstrained setting, the solution is at a vertex of the probability simplex, meaning
policy is deterministic.
» Can be solved efficiently via the Lagrangian dual.

» In constrained setting, the solution may be on an “edge”, meaning the policy is mixed.

e €1
st Ay(x)>1-96
1T(x) =1
0 = 7(x0)
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» Let 57 be an RKHS with kernel k and 2 be a vector-valued RKHS of functions on X' x U
mapping to 7. Let k be bounded by p < oo, and let v be a o-admissible loss function
with respect to 2. Then the learning algorithm given by

r’h Z ylaxlvul )+>\Hf||397

has uniform stability a with respect to v with a < 7.

» Let A be an algorithm with uniform stability « with respect to a loss function v such that
0 <wv(m,(x,u,y)) < B, forall (x,u,y) € Z and all sets S. Then for any M > 1 and any
0 € (0,1) the following bounds hold with probability 1 — ¢ of the random draw of the
sample S:

log(1/6
R() < Rs() + 20+ (4Ma + B) %
» Thus, we have that for any M > 1 and any § € (0,1), with probability 1 — ¢, the risk R is
bounded by:
22 2022 log(1/6 4\
R() < Rs(m) + 50 + < =L +p> %. )4
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Example Dynamics

Xt+1 = AXt + BUt + d(Xt) + Wi,

1 7. 0 0 T2/2 0 T2 vx|vi/2
o1 0 0 1T 0 B Ts|vie| v
A=lo 0 1 7.|" B=m| o 712 dK)=-c T2|v,|v, /2
P? 0 0 0 1 ’L 0 Ts Ts|vy|vy

» Nonlinear due to drift term.

» Non-Markovian due to the temporal correlation
between the state trajectory x and the uncertain

parameters. Tl
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