LP Solutions for Stochastic Optimal Control Problems via Hilbert Space Embeddings of Distributions

Adam Thorpe

University of New Mexico

2022

 Futuristic autonomous systems will create & operate under excessive uncertainty.

 \leq

How do we operate in these kinds of environments?

Scenario:

- No knowledge of dynamics or uncertainty.
- Data is available.

- How do we efficiently solve data-driven stochastic optimal control problems while accounting for real-world uncertainty?
 - Complex mechanical systems.
 - Complex environments.
 - Humans.

Proposed approach:

 Project data into a high-dimensional function space known as a reproducing kernel
 Hilbert space (RKHS).

 Can compute empirical approximations of distributions in an RKHS.

Stochastic optimal control problem can be viewed as an LP.

Stochastic Optimal Control

Related Work

Notable

Sutter, 2017 Martinelli, 2022 Bhattacharyya, 2020 Chua, 2018 Choi et al., 2020

Model-Predictive Control

Mesbah, 2016 Rosolia & Borrelli, 2017

Kernel Embeddings

Song, 2009, 2010 Grünewalder, 2012 Nishiyama, 2012

Chance-Constrained Optimization

Ono, et al., 2016 Schmerling & Pavone, 2017

Gaussian Processes & Koopman Ops.

Rasmussen & Williams, 2010 Deisenroth, 2015 Koller, 2018 Lew, 2021 Abraham & Murphey, 2019

Kernel Methods Koppel, et al., 2018, 2020 Thorpe & Oishi, 2020, 2021 Thorpe, Lew, Oishi, Pavone, 2022 (submitted) Thorpe & Oishi, 2022 (to appear)

NASA ULL THE UNIVERSITY OF

Related Work on Unconstrained Control

Very good performance.Low error vs. model-based.

- Dynamic programming.
- Nonlinear dynamics.
- Non-Gaussian disturbances.
- Dual solution.

Assumptions

A D b A A b A

- Dataset is available.
- Functions in RKHS.
- Kernel measurable and bounded.

 Constrained problems are more difficult.

Thorpe, Oishi, "Stochastic Optimal Control via Hilbert Space Embeddings of Distributions," CDC 2021

Kernel Approximation

- Given: dataset $\mathcal{D} = \{(x^i, x_0^i, u^i)\}_{i=1}^M$ taken i.i.d. from Q.
- ► A kernel is a *positive definite function*, e.g.

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$
NASA ULI THE UNIVERSITY OF NASA ULI THE UNIVERSITY OF NASA U

Kernel Approximation

- Solution is a linear combination.
- Compute weights using a regularized-least squares problem:

$$\hat{m} = \arg\min_{f \in \mathscr{Q}} \frac{1}{M} \sum_{i=1}^{M} \|k(x^{i}, \cdot) - f(x_{0}^{i}, u^{i})\|_{\mathscr{H}}^{2} + \lambda \|f\|_{\mathscr{Q}}^{2}$$

$$NASA ULI THE UNIVERSITY OF NASA ULI THE UNIVERSITY.$$

Kernel Approximation

Can approximate functions (and expectations) using *reproducing property*.

 $\mathbb{E}_{x \sim Q(\cdot|x_0,u)}[f(x)] \approx \langle f, \hat{m}(x_0,u) \rangle$

▶ To evaluate, we compute the weighted sum of kernel functions.

• Related to mean component of $GP(\mu, \Sigma)$.

RKHS Reformulation

20

Step 1: Stochastic Kernel Approximation

Figure reproduced with permission from Thomas Lew (thomas.lew@stanford.edu)

Step 2: Stochastic Policy

Figure reproduced with permission from Thomas Lew (thomas.lew@stanford.edu)

<□ → < //>

(□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

NASA ULI THE UNIVERSITY OF MEXICO.

Structure of Policy

- Optimal stochastic policy is *mixed* (Ono, 2016).
 - Means we choose between controls with a certain likelihood.

$$p(x_0) = \sum_{j=1}^{P} \gamma_j(x_0) k(\tilde{u}^j, \cdot)$$

• Coefficients $\gamma(x_0) \in \mathbb{R}^P$ in probability simplex.

$$\mathscr{S} = \{\gamma(x_0) \in \mathbb{R}^P \mid \mathbf{1}^\top \gamma(x_0) = 1, 0 \preceq \gamma(x_0)\}$$

Solution may be on an "edge" of the simplex, i.e. mixed.

75%

25%

Sampling

Dataset is key to obtain a good result.Naïve sampling insufficient.

Strategic Sampling

- Strategic sampling needed in practice.
- E.g. using a PD controller.
- We obtain controls which are good candidates.

Approximate RKHS Problem

$$\begin{split} \min_{\substack{\rho(x_0) \\ \rho(x_0)}} & \langle \rho(x_0), \langle \hat{m}(x_0, u), \ell^x \rangle + \ell^u \rangle \\ \text{s.t.} & \langle \rho(x_0), \langle \hat{m}(x_0, u), \mathbf{1}_{\mathcal{O}_1^c \times \cdots \times \mathcal{O}_{N-1}^c \times \mathcal{X}_{goal}} \rangle \rangle \geq 1 - \delta \\ & \mathbf{1}^\top \gamma(x_0) = 1 \\ & 0 \preceq \gamma(x_0) \end{split}$$

$$\begin{array}{l} \min_{\mathbf{x}} \ c^{\top} \mathbf{x} \\ \text{s.t.} \ \mathbf{A} \mathbf{x} \ge 1 - \delta \\ \mathbf{1}^{\top} \mathbf{x} = 1 \\ 0 \preceq \mathbf{x} \end{array}$$

Approximate problem is an LP.

Can solve using off-the-shelf solvers using interior point or simplex methods.

Demonstration (Quadrotor with Uncertain Mass)

Scenario

Quadrotor carrying a payload around obstacles in windy conditions.

Uncertain payload mass.

 \mathcal{X}_{goal}

- ▶ Windy conditions. Nonlinear drift.
- Use point mass as first step for comparison.

- Going between obstacles has higher risk, i.e. higher chance of collision.
- Going around has higher cost.
- We expect a policy that mixes the two paths.

Results

- \blacktriangleright Higher δ leads to a policy that has higher likelihood of choosing risky middle corridor.
- Sample size: M, P = 2500
- Time horizon: N = 15
- Generating controls: $\approx 5s$
- Computing LP: ≈ 100 ms
- Scales with sample size: $\mathcal{O}(M^3)$

Empirical probability of failure

Comparison with Ono et al., 2016

- Boole's inequality.
- Lagrangian relaxation.
- Bisection technique.
- Difficult dynamics:

$$x_{t+1} = Ax_t + \frac{1}{m}Bu_t - \alpha d(x_t) + w_t$$

Satisfies constraints. Does not satisfy constraints. 10 -10 $\widecheck{\mathcal{X}_{goal}}$ $\widecheck{\mathcal{X}_{goal}}$ p_y p_y 55 O \mathcal{O} 0 0 $\dot{5}$ 10 $\mathbf{5}$ 10 Ω p_x p_x

イロト イロト イヨト イヨト

NASA ULI THE UNIVERSITY OF MEXICO.

	Kernel Approach	Ono 2016
Tolerable probability of failure δ	0.05	0.05
Empirical probability of failure	0.029	0.102

Advantages

- LP reformulation.
- Mixed policies.
- Accommodates:
 - Arbitrary disturbances.
 - Non-convex cost & constraints.

- Dataset is key to obtaining a good result.
- Feasibility depends on data.
- Convergence to optimal policy is still under investigation.

Thank you!

Contact: ajthor@unm.edu

Code: https://github.com/ajthor/socks SOCKS: Python toolbox for Stochastic Optimal Control using Kernel Methods

The NASA University Leadership initiative (Grant #80NSSC20M0163) provided funds to assist the authors with their research, but this article solely reflects the opinions and conclusions of its authors and not any NASA entity.

RKHS Embeddings

- Define a positive definite kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- ▶ Moore-Aronszajn theorem: there exists a unique RKHS *ℋ* corresponding to *k*.
 - Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle$
 - Kernel trick: $k(x, x') = \langle k(x, \cdot), k(x', \cdot) \rangle$
 - Every $f \in \mathcal{H}$ is a linear combination of kernel functions.

$$f = \sum_{i} \alpha_{i} k(x_{i}, \cdot) \qquad \qquad f(x) = \langle f, k(x, \cdot) \rangle = \sum_{i} \alpha_{i} k(x_{i}, x)$$

▶ Riesz lemma: $\mathbb{E}[f(X)]$ is *linear* $\implies \exists m \in \mathscr{H}$ such that $\mathbb{E}[f(x)] = \langle f, m \rangle$.

1. Using dataset $\mathcal{D} = \{(x_0^i, u^i, x^i)\}_{i=1}^M$, estimate:

$$\mathbb{E}[f(x)] \coloneqq \int_{\mathcal{X}} f(x)Q(\mathrm{d}x \mid x_0, u) \approx \langle f, \hat{m}(x_0, u) \rangle = \mathbf{f}^{\top} (\Psi \Psi^{\top} + \lambda MI)^{-1} \Psi k(x_0, \cdot) I(u, \cdot),$$

where $\mathbf{f} = [f(x^1), \dots, f(x^M)]^{\top}$ and $\Psi = [k(x_0^1, \cdot)I(u^1, \cdot), \dots, k(x_0^M, \cdot)I(u^M, \cdot)]^{\top}.$
Given $\{\tilde{u}^j\}_{j=1}^P$,

$$\mathbb{E}[g(u)] \coloneqq \int_{\mathcal{U}} g(u) \pi(\mathrm{d} u \mid x_0) = \langle g, p(x_0) \rangle = \left\langle g, \sum_{j=1}^{P} \gamma_j(x_0) I(\tilde{u}^j, \cdot) \right\rangle,$$

where $\gamma(x_0) \in \mathbb{R}^P$.

3. Compute:

2.

$$\mathbb{E}_{u \sim \pi(\cdot | x_0)}[\mathbb{E}_{x \sim Q(\cdot | x_0, u)}[f(x)]] = \int_{\mathcal{U}} \int_{\mathcal{X}} f(x)Q(\mathrm{d}x | x_0, u)\pi(\mathrm{d}u | x_0)$$

$$\approx \boldsymbol{f}^{\top}(\Psi\Psi^{\top} + \lambda MI)^{-1}\Psi\Upsilon^{\top}k(x_0, \cdot)\gamma(x_0)$$

$$= \boldsymbol{f}^{\top}WK(x_0)\gamma(x_0)$$
NASA ULI THE UNIVERSITY OF
NASA

- We constrain $\gamma(x_0)$ to be in the probability simplex $\mathscr{S} = \{x \in \mathbb{R}^P \mid \mathbf{1}^\top x = 1, 0 \leq x\}.$
- LP can be solved easily, e.g. via interior-point or simplex methods.

 $\gamma($

In unconstrained setting, the solution is at a vertex of the probability simplex, meaning policy is deterministic.

Can be solved efficiently via the Lagrangian dual.

▶ In constrained setting, the solution may be on an "edge", meaning the policy is mixed.

$$egin{aligned} \min_{x_0)\in\mathbb{R}^P} & c^ op\gamma(x_0) \ ext{s.t.} & A\gamma(x_0)\geq 1-\delta \ & \mathbf{1}^ op\gamma(x_0)=1 \ & 0\preceq\gamma(x_0) \end{aligned}$$

Let ℋ be an RKHS with kernel k and ℒ be a vector-valued RKHS of functions on X × U mapping to ℋ. Let k be bounded by ρ < ∞, and let v be a σ-admissible loss function with respect to ℒ. Then the learning algorithm given by</p>

$$\hat{m} = \arg\min_{f \in \mathscr{D}} \frac{1}{M} \sum_{i=1}^{M} \upsilon(f, (y_i, x_i, u_i)) + \lambda \|f\|_{\mathscr{D}}^2,$$

has uniform stability α with respect to v with $\alpha \leq \frac{\sigma^2 \rho^2}{2\lambda M}$.

▶ Let A be an algorithm with uniform stability α with respect to a loss function v such that $0 \le v(\hat{m}, (x, u, y)) \le B$, for all $(x, u, y) \in \mathbb{Z}$ and all sets S. Then for any $M \ge 1$ and any $\delta \in (0, 1)$ the following bounds hold with probability $1 - \delta$ of the random draw of the sample S:

$$\mathsf{R}(\hat{m}) \leq \mathsf{R}_{\mathcal{S}}(\hat{m}) + 2lpha + (4Mlpha + B)\sqrt{rac{\log(1/\delta)}{2M}}.$$

▶ Thus, we have that for any $M \ge 1$ and any $\delta \in (0, 1)$, with probability $1 - \delta$, the risk R is bounded by:

Example Dynamics

 $x_{t+1} = Ax_t + Bu_t + d(x_t) + w_t,$

