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▶ Futuristic autonomous systems will create & operate under
excessive uncertainty.

▶ How do we operate in these kinds of environments?



▶ Data-driven solutions are needed.

▶ Need for efficient tools.
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Scenario:
▶ No knowledge of dynamics or

uncertainty.

▶ Data is available.

▶ How do we efficiently solve
data-driven stochastic optimal
control problems while
accounting for real-world
uncertainty?
▶ Complex mechanical systems.
▶ Complex environments.
▶ Humans.
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Proposed approach:

▶ Project data into a
high-dimensional function space
known as a reproducing kernel
Hilbert space (RKHS).

▶ Can compute empirical
approximations of distributions
in an RKHS.

▶ Stochastic optimal control
problem can be viewed as an LP.
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Stochastic Optimal Control

min
π

E[ℓx(X ) + ℓu(U)]

s.t. x ∼ Q(X | x0, u)
u ∼ π(U | x0)

P
((N−1∧

t=1

xt ̸∈ Ot

)
∧ (xN ∈ Xgoal)

)
≥ 1− δ

Unknown

▶ Intractable since Q is unknown.

▶ From Ono et al., 2016, we seek a stochastic policy.

▶ Amenable to convexity and other properties.

O

Xgoal
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Related Work on Unconstrained Control
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1 Assumptions

▶ Dataset is available.

▶ Functions in RKHS.

▶ Kernel measurable and
bounded.

▶ Very good performance.

▶ Low error vs. model-based.

▶ Dynamic programming.

▶ Nonlinear dynamics.

▶ Non-Gaussian disturbances.

▶ Dual solution.

▶ Constrained problems are
more difficult.

Thorpe, Oishi, ”Stochastic Optimal Control via Hilbert Space Embeddings of Distributions,” CDC 2021



NASA ULI
8/21

Kernel Approximation

(x0, u)

Q(x | x0, u)

▶ Given: dataset D = {(x i , x i0, ui )}Mi=1 taken i.i.d. from Q.

▶ A kernel is a positive definite function, e.g.

k(x , x ′) = exp

(
−∥x − x ′∥2

2σ2

)
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Kernel Approximation

(x0, u)

Q(x | x0, u)

▶ Solution is a linear combination.

▶ Compute weights using a regularized-least squares problem:

m̂ = arg min
f∈Q

1

M

M∑
i=1

∥k(x i , ·)− f (x i0, u
i )∥2H + λ∥f ∥2Q



NASA ULI
10/21

Kernel Approximation

βi(x0, u)k(x
i, ·)

∑
i βi(x0, u)k(x

i, ·)

(x0, u)

Q(x | x0, u)

▶ Can approximate functions (and expectations) using reproducing property:

Ex∼Q(·|x0,u)[f (x)] ≈ ⟨f , m̂(x0, u)⟩

▶ To evaluate, we compute the weighted sum of kernel functions.

▶ Related to mean component of GP(µ,Σ).
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RKHS Reformulation

min
p(x0)

⟨p(x0), ⟨m(x0, u), ℓ
x⟩+ ℓu⟩

s.t. ⟨p(x0), ⟨m(x0, u), 1Oc
1×···×Oc

N−1×Xgoal
⟩⟩ ≥ 1− δ

▶ Goal: compute m̂(x0, u) ≈ m(x0, u), find p(x0).

Computational Challenge
▶ RKHS may be infinite-dimensional.

▶ Thus, we search in a finite subspace.

p(x0) =
P∑
j=1

γj(x0)k(ũ
j , ·)

Finite support

R Coefficients
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Step 1: Stochastic Kernel Approximation

Figure reproduced with permission from Thomas Lew

(thomas.lew@stanford.edu)
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Step 2: Stochastic Policy

Figure reproduced with permission from Thomas Lew

(thomas.lew@stanford.edu)
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Structure of Policy
▶ Optimal stochastic policy is mixed (Ono, 2016).

▶ Means we choose between controls with a certain likelihood.

p(x0) =
P∑
j=1

γj(x0)k(ũ
j , ·)

▶ Coefficients γ(x0) ∈ RP in probability simplex.

S = {γ(x0) ∈ RP | 1⊤γ(x0) = 1, 0 ⪯ γ(x0)}

▶ Solution may be on an “edge” of the simplex, i.e. mixed.

25%

75%
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Sampling
▶ Dataset is key to obtain a good result.

▶ Näıve sampling insufficient.

Strategic Sampling

▶ Strategic sampling needed in practice.

▶ E.g. using a PD controller.

▶ We obtain controls which are good
candidates.

Näıve Sampling

Strategic Sampling

U

U
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Approximate RKHS Problem

min
p(x0)

⟨p(x0), ⟨m̂(x0, u), ℓ
x⟩+ ℓu⟩

s.t. ⟨p(x0), ⟨m̂(x0, u), 1Oc
1×···×Oc

N−1×Xgoal
⟩⟩ ≥ 1− δ

1⊤γ(x0) = 1

0 ⪯ γ(x0)

min
x

c⊤x

s.t. Ax ≥ 1− δ

1⊤x = 1

0 ⪯ x

▶ Approximate problem is an LP.

▶ Can solve using off-the-shelf solvers using interior point or simplex methods.
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Demonstration (Quadrotor with Uncertain Mass)

Scenario
Quadrotor carrying a payload around obstacles in windy conditions.

▶ Uncertain payload mass.

▶ Windy conditions. Nonlinear drift.

▶ Use point mass as first step for comparison.

▶ Going between obstacles has higher risk,
i.e. higher chance of collision.

▶ Going around has higher cost.

▶ We expect a policy that mixes the two paths.

Xgoal
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Results

▶ Higher δ leads to a policy that has
higher likelihood of choosing risky
middle corridor.

▶ Sample size: M,P = 2500

▶ Time horizon: N = 15

▶ Generating controls: ≈ 5s

▶ Computing LP: ≈ 100ms

▶ Scales with sample size: O(M3)

δ

“riskier”

Tolerable probability of failure δ 0.05 0.20
Empirical probability of failure 0.029 0.039

— Satisfies constraints.

— Does not satisfy constraints.
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Comparison with Ono et al., 2016

▶ Boole’s inequality.

▶ Lagrangian relaxation.

▶ Bisection technique.

▶ Difficult dynamics:

xt+1 = Axt +
1
mBut − αd(xt) + wt

Kernel Approach Ono 2016
Tolerable probability of failure δ 0.05 0.05
Empirical probability of failure 0.029 0.102

— Satisfies constraints.

— Does not satisfy constraints.
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Advantages

▶ LP reformulation.

▶ Mixed policies.

▶ Accommodates:
▶ Arbitrary disturbances.
▶ Non-convex cost & constraints.

Caveats
▶ Dataset is key to obtaining a good result.

▶ Feasibility depends on data.

▶ Convergence to optimal policy is still under
investigation.
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Thank you!
Contact: ajthor@unm.edu

Code: https://github.com/ajthor/socks
SOCKS: Python toolbox for Stochastic Optimal Control using Kernel Methods

The NASA University Leadership initiative (Grant #80NSSC20M0163) provided funds to assist the authors with their research,

but this article solely reflects the opinions and conclusions of its authors and not any NASA entity.

ajthor@unm.edu
https://github.com/ajthor/socks
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RKHS Embeddings

▶ Define a positive definite kernel function k : X × X → R.
▶ Moore-Aronszajn theorem: there exists a unique RKHS H corresponding to k.

▶ Reproducing property: f (x) = ⟨f , k(x , ·)⟩
▶ Kernel trick: k(x , x ′) = ⟨k(x , ·), k(x ′, ·)⟩
▶ Every f ∈ H is a linear combination of kernel functions.

f =
∑
i

αik(xi , ·) f (x) = ⟨f , k(x , ·)⟩ =
∑
i

αik(xi , x)

▶ Riesz lemma: E[f (X )] is linear =⇒ ∃m ∈ H such that E[f (x)] = ⟨f ,m⟩.
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1. Using dataset D = {(x i0, ui , x i )}Mi=1, estimate:

E[f (x)] :=
∫
X
f (x)Q(dx | x0, u) ≈ ⟨f , m̂(x0, u)⟩ = f ⊤(ΨΨ⊤ + λMI )−1Ψk(x0, ·)l(u, ·),

where f = [f (x1), . . . , f (xM)]⊤ and Ψ = [k(x10 , ·)l(u1, ·), . . . , k(xM0 , ·)l(uM , ·)]⊤.
2. Given {ũj}Pj=1,

E[g(u)] :=
∫
U
g(u)π(du | x0) = ⟨g , p(x0)⟩ =

〈
g ,

P∑
j=1

γj(x0)l(ũ
j , ·)

〉
,

where γ(x0) ∈ RP .

3. Compute:

Eu∼π(·|x0)[Ex∼Q(·|x0,u)[f (x)]] =
∫
U

∫
X
f (x)Q(dx | x0, u)π(du | x0)

≈ f ⊤(ΨΨ⊤ + λMI )−1ΨΥ⊤k(x0, ·)γ(x0)
= f ⊤WK (x0)γ(x0)
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▶ We constrain γ(x0) to be in the probability simplex S = {x ∈ RP | 1⊤x = 1, 0 ⪯ x}.
▶ LP can be solved easily, e.g. via interior-point or simplex methods.

▶ In unconstrained setting, the solution is at a vertex of the probability simplex, meaning
policy is deterministic.
▶ Can be solved efficiently via the Lagrangian dual.

▶ In constrained setting, the solution may be on an “edge”, meaning the policy is mixed.

min
γ(x0)∈RP

c⊤γ(x0)

s.t. Aγ(x0) ≥ 1− δ

1⊤γ(x0) = 1

0 ⪯ γ(x0)
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▶ Let H be an RKHS with kernel k and Q be a vector-valued RKHS of functions on X ×U
mapping to H . Let k be bounded by ρ < ∞, and let υ be a σ-admissible loss function
with respect to Q. Then the learning algorithm given by

m̂ = arg min
f∈Q

1

M

M∑
i=1

υ(f , (yi , xi , ui )) + λ∥f ∥2Q,

has uniform stability α with respect to υ with α ≤ σ2ρ2

2λM .

▶ Let A be an algorithm with uniform stability α with respect to a loss function υ such that
0 ≤ υ(m̂, (x , u, y)) ≤ B, for all (x , u, y) ∈ Z and all sets S. Then for any M ≥ 1 and any
δ ∈ (0, 1) the following bounds hold with probability 1− δ of the random draw of the
sample S:

R(m̂) ≤ RS(m̂) + 2α+ (4Mα+ B)

√
log(1/δ)

2M
.

▶ Thus, we have that for any M ≥ 1 and any δ ∈ (0, 1), with probability 1− δ, the risk R is
bounded by:

R(m̂) ≤ RS(m̂) +
σ2ρ2

λM
+

(
2σ2ρ2

λ
+ ρ

)√
log(1/δ)

2M
.
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Example Dynamics

xt+1 = Axt + But + d(xt) + wt ,

A =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 , B =
1

m


T 2
s /2 0
Ts 0
0 T 2

s /2
0 Ts

 , d(xt) = −α


T 2
s |vx |vx/2
Ts |vx |vx

T 2
s |vy |vy/2
Ts |vy |vy


Uncertain parameters

▶ Nonlinear due to drift term.

▶ Non-Markovian due to the temporal correlation
between the state trajectory x and the uncertain
parameters.

Xgoal
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