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SAN FRANCISCO — Uber’s robotic vehicle project was not living up to 
expectations months before a self-driving car operated by the company 
struck and killed a woman in Tempe, Ariz.

Uber’s Self-Driving Cars Were Struggli
Before Arizona Crash

SAN FRANCISCO — In one video, a Tesla tries to drive down some 
light-rail tracks. In another, a Tesla fails to stop for a pedestrian in a 
crosswalk. And at one point, the most advanced driver-assistance 
product available to consumers appears to slam into a bike lane 
bollard at 11 mph.

‘Full Self-Driving’ clips show owner
of Teslas fighting for control, and 
experts see deep flaws
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Motivation
▶ Modern systems operate in uncertain environments.

▶ Must deal with strict operating constraints, safety
constraints, and humans.

▶ Unknown dynamics & stochastic processes.

▶ Complex mechanical systems & dynamics.

▶ Unforeseen human factors.

Images courtesy of: NASA, The National Archives, and Ford Motor Company
from USA, CC BY 2.0, via Wikimedia Commons



3/37

Data-Driven vs. Model-Based Control
▶ Autonomy will only become more prevalent.

▶ Motivates the need for data-driven techniques that enable control and assess safety.

Model-Based

Known Dynamics & Disturbances
vs.

Unknown Stochastic Processes

Data-Driven
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Problem
▶ How do we solve data-driven stochastic

optimal control problems while accounting for
real-world uncertainty?

Challenges

▶ Must provide assurances of safety.

▶ Must operate within constraints.
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Data-Driven Control & Stochastic Reachability

min
π∈Π

E[g(x , u)]

s.t. x ∼ Q(· | x0, u)
u ∼ π(· | x0)
P(x ∈ F ) ≥ 1− δ

Unknown

▶ Difficult since Q is unknown, chance-constrained optimization.

▶ Model-based often limited to LTI, Gaussian disturbance.

Stochastic Reachability

max
π∈Π

E
[(N−1∏

t=0

1K(xt)

)
1T (xN)

]
s.t. xt+1 ∼ Q(· | xt , ut)

ut ∼ π(· | xt)

▶ Multiplicative cost.
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Our Proposed Approach
▶ Project data collected from Q into a high-dimensional function

space known as a reproducing kernel Hilbert space (RKHS) H .

Reproducing property: f (x) = ⟨f , k(x , ·)⟩H

▶ Examples of Hilbert spaces: Rn, L2, ℓ2

▶ Kernel embeddings of distributions:

E[f (X )] = ⟨f ,m⟩H

Advantages

▶ Natural fit for many control problems.

▶ Mathematically rigorous.

▶ Nonparametric, i.e. few assumptions.

▶ Stochastic control problems
can be viewed as an LP.
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Related Work

▶ Dynamic Programming & Optimal Control

Bertsekas & Shreve 1978, Puterman 2014

▶ Chance-Constrained Control

Lew et al. 2022, Lew, Bonalli, Pavone 2020, Ono, Chamie, Pavone, Acikmese 2016

▶ Stochastic Reachability

Abate et al. 2008, Summers & Lygeros 2012, Thorpe & Oishi 2019

▶ Robust Control & Optimization

Zhu, Jitkrittum, Diehl, Schölkopf 2021, Nemmour, Schölkopf, Zhu 2021

▶ Infinite LPs

Martinelli, Gargiani, Lygeros 2021 & 2022, Sutter, Kamoutsi, Esfahani, Lygeros 2017

▶ Kernel-Based Control

Song 2009, Grünewalder 2012, Thorpe & Oishi 2021, Thorpe, Lew, Oishi, Pavone 2022
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Prior Work on Unconstrained Control & Reachability
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▶ Very good performance.

▶ Low error vs. model-based.

▶ Nonlinear systems.

▶ Non-Gaussian disturbances.

▶ Dynamic programming.

▶ Constraints are more difficult.

▶ Forward reachability.

▶ Learning-enabled components.

Thorpe, Oishi, CDC 2021
Thorpe, Ortiz, Oishi, L4DC 2021
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Outline

Stochastic Optimal Control Stochastic Reachability Future Work
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Stochastic Optimal Control

min
π∈Π

E[g(x , u)]

s.t. x ∼ Q(· | x0, u)
u ∼ π(· | x0)
P(x ∈ F ) ≥ 1− δ

Unknown

▶ Intractable since stochastic kernel is unknown.

▶ Data taken i.i.d. from Q is available.

▶ We seek a stochastic policy.

▶ Solution is non-trivial.

Challenges

▶ Computing expectations and probability.

▶ Policy synthesis.
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Stochastic Kernels
▶ A stochastic kernel κ from (X ,BX ) to (Y,BY),

κ : BY ×X → [0, 1]

1. The map x 7→ κ(B | x) is BX -measurable for all B ∈ BY .
2. The map B 7→ κ(B | x) is a probability measure on (Y,BY) for every x ∈ X .

▶ Defines an integral operator κf ,

κf (x) =

∫
Y
f (y)κ(dy | x)

Main Idea
▶ Expectations (integrals) are linear.

▶ For f in RKHS, can use Riesz theorem.
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System Definition Via Stochastic Kernels
▶ Discrete-time stochastic system,

xt+1 = f (xt , ut ,wt)

states xt ∈ X , control inputs ut ∈ U , independent RVs wt .

▶ Can express as a Markov control process (X ,U ,Q).

xt+1 ∼ Q(· | xt , ut)

▶ A policy is a sequence of stochastic kernels πt from X to U .
▶ Can look at trajectories x = {xt}Nt=1, u = {ut}N−1

t=0 .

Main Idea
▶ Embed Q in an RKHS.

▶ Estimate using data.

▶ Embed policy in an RKHS.
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Stochastic Optimal Control

min
π∈Π

∫
UN

∫
XN

f0(y)Q(dy | x0, u)π(du | x0)

s.t.

∫
UN

∫
XN

fi (y)Q(dy | x0, u)π(du | x0) ≥ 1− δ, i = 1, . . . , n

▶ Assume f0, . . . , fn are in an RKHS H and
∫
XN f (y)Q(dy | x0, u) < ∞,∫

XN

f (y)Q(dy | x0, u) = ⟨f ,m(x0, u)⟩H ≈ ⟨f , m̂(x0, u)⟩H

Step 1: Compute an estimate m̂(x0, u) of m(x0, u) in H .

Step 2: Find policy representation p(x0) in RKHS U .
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Step 1: Embedding Stochastic Kernel

min
p(x0)∈U

⟨⟨f0, m̂(x0, ·)⟩H , p(x0)⟩U

s.t. ⟨⟨fi , m̂(x0, ·)⟩H , p(x0)⟩U ≥ 1− δ, i = 1, . . . , n

▶ Using data S = {(x i0, ui , x i )}Mi=1, compute estimate m̂(x , u) of m(x , u),

m̂ = arg min
f∈Q

1

M

M∑
i=1

∥k(x i , ·)− f (x i0, u
i )∥2H + λ∥f ∥2Q

⟨f , m̂(x0, u)⟩H ≈
∫
XN

f (y)Q(dy | x0, u)
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Step 2: Policy Synthesis

min
p(x0)∈U

⟨⟨f0, m̂(x0, ·)⟩H , p(x0)⟩U

s.t. ⟨⟨fi , m̂(x0, ·)⟩H , p(x0)⟩U ≥ 1− δ, i = 1, . . . , n

▶ Represent the policy in an RKHS U .

▶ RKHS may be infinite-dimensional.
▶ We search in a finite subspace.

p(x0) =
P∑
j=1

γj(x0)k(ũ
j , ·)

Finite Support

R Coefficients

Thorpe, Lew, Oishi, Pavone, L4DC 2022
Thorpe, Oishi, CDC 2021
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Structure of the Policy

▶ Optimal stochastic policy is mixed.
▶ Means we choose between controls with a certain likelihood.
▶ Mixed policy may have lower expected cost.

▶ Coefficients γ(x0) in probability simplex.

S = {γ ∈ RP | 1⊤γ = 1, 0 ⪯ γ}

▶ Solution may be on an “edge”
of the simplex, i.e. mixed. 25%

75%

p1

p2

p3
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Strategic Sampling
▶ How do we choose controls ũj?

p(x0) =
P∑
j=1

γj(x0)k(ũ
j , ·)

▶ Näıve sampling insufficient.

▶ Strategic sampling needed in practice, e.g. using:
▶ PD controller.
▶ Motion primitives.

▶ We obtain good candidate controls.

Strategic

Näıve

UN

UN
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Approximate Problem

min
γ(x0)∈RP

f ⊤
0 WΨΥ⊤k(x0, ·)γ(x0)

s.t. f ⊤
i WΨΥ⊤k(x0, ·)γ(x0) ≥ 1− δ, i = 1, . . . , n

1⊤γ(x0) = 1

0 ⪯ γ(x0)

▶ Approximate problem is an LP.
▶ Can be solved efficiently using off-the-shelf solvers.

▶ Interior point or simplex algorithms.

min
x

c⊤x

s.t. Ax ≥ 1− δ

1⊤x = 1

0 ⪯ x

Thorpe, Lew, Oishi, Pavone, L4DC 2022
Thorpe, Oishi, CDC 2021
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Demonstration

Scenario
Quadrotor carrying payload around obstacles
in uncertain conditions.

▶ Uncertain payload mass.

▶ Windy conditions & nonlinear drift.

▶ Must choose between safety & efficiency.
▶ Narrow corridor less safe.
▶ Longer path less efficient.

▶ Solution is a mixed policy.

Xgoal
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Results

▶ Sample size: M,P = 2,500

▶ Time horizon: N = 15

▶ Generating sample: ≈ 5s

▶ Generating controls: ≈ 5s

▶ Computing LP: ≈ 100 ms

▶ Scales with sample size: O(M3)

▶ Higher δ leads to a policy that has a higher chance of choosing “risky” middle corridor.

Tolerable probability of failure δ 0.05 0.20
Empirical probability of failure 0.029 0.039

(Recall: chance constraint P(x ∈ F ) ≥ 1− δ)

— Satisfies constraints.

— Does not satisfy constraints.
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Comparison With Ono 2016

▶ Boole’s inequality.

▶ Lagrangian relaxation.

▶ Difficult dynamics:

xt+1 = Axt+
1

m
But−αd(xt)+wt

▶ Parameters m, α are uncertain.

▶ d(xt) is nonlinear drift term.

▶ Existing methods do not satisfy chance constraints.

Our Approach Ono 2016
Tolerable probability of failure δ 0.05 0.05
Empirical probability of failure 0.029 0.102

— Satisfies constraints.

— Does not satisfy constraints.
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Outline

Stochastic Optimal Control Stochastic Reachability Future Work
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Stochastic Reachability (Terminal-Hitting Time Problem)
▶ Goal: Compute “safety probabilities,” i.e. the likelihood that a system following a fixed

policy π = {π0, π1, . . . πN−1} ∈ Π will reach a target set T at t = N while remaining
within a safe set K for all t < N.

rπx0(K, T ) = P(xN ∈ T ∧ xt ∈ K,∀t = 0, 1, . . . ,N − 1) = Eπ
x0

[(N−1∏
t=0

1K(xt)

)
1T (xN)

]

V π
N (x) = 1T (x)

V π
t (x) = 1K(x)

∫
U

∫
X
V π
t+1(y)Q(dy | x , u)πt(du | x)

⇓
V π
0 (x0) = rπx0(K, T )

▶ Intractable since Q is unknown. K
T
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Maximally Safe Policies
▶ Find a policy π∗ = {π∗

0 , π
∗
1 , . . . , π

∗
N−1} ∈ Π such that for all x ∈ X ,

π∗
t = arg sup

πt

1K(x)

∫
U

∫
X
V ∗
t+1(y)Q(dy | x , u)πt(du | x)

V ∗
N(x) = 1T (x)

V ∗
t (x) = sup

πt

1K(x)

∫
U

∫
X
V ∗
t+1(y)Q(dy | x , u)πt(du | x)

⇓
V ∗
0 (x0) = rπ

∗

x0 (K, T )

Step 1: Compute estimate m̂ of Q in H .

Step 2: Represent policy π∗ in RKHS U .
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Approximate Stochastic Reachability
▶ Use kernel embeddings to estimate m̂(x , u) ∈ H and p∗0 (x), p

∗
1 (x), . . . , p

∗
N−1(x) ∈ U .

V̄N(x) = 1T (x)

V̄t(x) = 1K(x)⟨⟨V̄t+1, m̂(x , ·)⟩H , p∗t (x)⟩U

▶ At each time step,

p∗t (x) = arg sup
pt(x)

1K(x)⟨⟨V̄t+1, m̂(x , ·)⟩H , pt(x)⟩U

s.t. 1⊤γ(x) = 1

0 ⪯ γ(x)

▶ Approximate problem is an LP.

Thorpe, Oishi, L-CSS 2019
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Structure of the Policy

p(x) =
P∑
j=1

γj(x)k(ũ
j , ·)

▶ Optimal policy is deterministic.
▶ Means policy assigns probability mass one to a single control.

▶ Coefficients γ(x) in probability simplex.

▶ Solution is at a “vertex”, i.e. deterministic.

▶ Can be solved efficiently via the Lagrangian dual.

p1

p2

p3
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Demonstration
▶ Point mass system (double integrator).

▶ Chosen for validation.

▶ Goal is to stay within a small region around the origin.

rπx0(K, T ) = P(xN ∈ T ∧ xt ∈ K,∀t = 0, 1, . . . ,N − 1)

X\K

Unsafe trajectories leave safe set.

Map initial conditions to
safety probabilities.

Compute maximal policy.
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Results

▶ Sample size: M,P = 2,500

▶ Time horizon: N = 15

▶ Generating sample: ≈ 1s

▶ Computing LP: ≈ 100 ms

▶ Scales with sample size: O(M3)

▶ Maximum absolute error: ≈ 10%

▶ Warmer colors denote higher safety probability.

▶ Maximally safe policy has better performance.
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Outline

Stochastic Optimal Control Stochastic Reachability Future Work
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Existing Challenges

▶ Out-of-sample generalization.

▶ Strategic sampling techniques.

▶ Incorporating feedback into chance-constrained problem.

Limitations
▶ Currently open-loop.

▶ Highly dependent on sample used.

Sampled area
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Out-Of-Sample Generalization

▶ Sample size: M = 2,500

▶ Time horizon: N = 40

▶ Computing LP: ≈ 150 ms

▶ Nonlinear system.

▶ Nonholonomic dynamics.

▶ Non-Gaussian disturbance.

▶ Outside sampled region, control exhibits poor performance.
▶ I.e. poor out-of-sample generalization.

▶ Can we use known properties of the system to improve data-driven control performance?
▶ E.g., symmetry, knowledge of the vector field, SE(n)-invariance.

Outside sampled region
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Incorporating Dynamics

▶ Sample size: M = 100

▶ Time horizon: N = 40

▶ Computing LP: ≈ 10 ms

▶ Main idea: Collect sample in body frame and transform the sample as the system moves.

▶ Much better performance with smaller sample.

▶ Uses physics-informed learning, side information.

Sample in body frame
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Strategic Sampling

p(x0) =
P∑
j=1

γj(x0)k(ũ
j , ·)

Finite Support

▶ How do we choose the “support” of the policy?

▶ Strategic sampling techniques needed.
▶ Learning-based approaches.
▶ Active sampling.
▶ Motion primitives.

▶ Direct optimization possible?

Strategic

Näıve

UN

UN
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Incorporating Feedback

▶ Current chance-constrained solution is open-loop.

▶ Minor perturbations can lead to large errors.

Possible Approaches

▶ MPC (periodically re-optimize)

▶ Solve a harder problem.
▶ Decompose stochastic kernel.
▶ Satisfy joint chance constraints.
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Conclusion

Advantages

▶ LP reformulation.

▶ Mixed policies.

▶ Arbitrary disturbances.

▶ Nonlinear and non-Markovian dynamics.

Current Limitations
▶ Feasibility depends on sample.

▶ Quality of solution is highly dependent on sample.
▶ Need to properly choose control actions.
▶ Generalization is important.

▶ Open-loop controllers.

▶ Convergence still under investigation.
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SOCKS: Stochastic Optimal Control Using Kernel Methods
▶ Stochastic Optimal Control

▶ Dynamic Programming

▶ Stochastic Reachability

▶ Forward Reachability

▶ Written in Python.

▶ Several examples & benchmarks.

▶ Binder integration.

https://github.com/ajthor/socks
Thorpe, Oishi, HSCC 2022

https://github.com/ajthor/socks
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Thank you!
Contact: ajthor@unm.edu

Code: https://github.com/ajthor/socks
SOCKS: Python Toolbox for Stochastic Optimal Control using Kernel Methods

This material is based upon work supported by the National Science Foundation under NSF Grant Number CNS-1836900. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
This research was supported in part by the Laboratory Directed Research and Development program at Sandia National
Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525. The views expressed in this article do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

ajthor@unm.edu
https://github.com/ajthor/socks
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RKHS Embeddings
▶ Define a positive definite kernel function k : X × X → R.
▶ Moore-Aronszajn theorem: there exists a unique RKHS H corresponding to k.

▶ Reproducing property: f (x) = ⟨f , k(x , ·)⟩
▶ Kernel trick: k(x , x ′) = ⟨k(x , ·), k(x ′, ·)⟩
▶ Every f ∈ H is a linear combination of kernel functions.

f =
∑
i

αik(xi , ·) f (x) = ⟨f , k(x , ·)⟩ =
∑
i

αik(xi , x)

▶ Riesz lemma: E[f (X )] is linear =⇒ ∃m ∈ H such that E[f (x)] = ⟨f ,m⟩.
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▶ Using dataset D = {(x i0, ui , x i )}Mi=1, estimate:

E[f (x)] :=
∫
X
f (x)Q(dx | x0, u) ≈ ⟨f , m̂(x0, u)⟩ = f ⊤(ΨΨ⊤ + λMI )−1Ψk(x0, ·)l(u, ·),

where f = [f (x1), . . . , f (xM)]⊤ and Ψ = [k(x10 , ·)l(u1, ·), . . . , k(xM0 , ·)l(uM , ·)]⊤.
▶ Given {ũj}Pj=1,

E[g(u)] :=
∫
U
g(u)π(du | x0) = ⟨g , p(x0)⟩ =

〈
g ,

P∑
j=1

γj(x0)l(ũ
j , ·)

〉
,

where γ(x0) ∈ RP .

▶ Compute:

Eu∼π(·|x0)[Ex∼Q(·|x0,u)[f (x)]] =

∫
U

∫
X
f (x)Q(dx | x0, u)π(du | x0)

≈ f ⊤(ΨΨ⊤ + λMI )−1ΨΥ⊤k(x0, ·)γ(x0)

= f ⊤WK (x0)γ(x0)
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▶ We constrain γ(x0) to be in the probability simplex S = {x ∈ RP | 1⊤x = 1, 0 ⪯ x}.
▶ LP can be solved easily, e.g. via interior-point or simplex methods.

▶ In unconstrained setting, the solution is at a vertex of the probability simplex, meaning
policy is deterministic.
▶ Can be solved efficiently via the Lagrangian dual.

▶ In constrained setting, the solution may be on an “edge”, meaning the policy is mixed.

min
γ(x0)∈RP

c⊤γ(x0)

s.t. Aγ(x0) ≥ 1− δ

1⊤γ(x0) = 1

0 ⪯ γ(x0)
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▶ Let H be an RKHS with kernel k and Q be a vector-valued RKHS of functions on X ×U
mapping to H . Let k be bounded by ρ < ∞, and let υ be a σ-admissible loss function
with respect to Q. Then the learning algorithm given by

m̂ = arg min
f∈Q

1

M

M∑
i=1

υ(f , (yi , xi , ui )) + λ∥f ∥2Q,

has uniform stability α with respect to υ with α ≤ σ2ρ2

2λM .

▶ Let A be an algorithm with uniform stability α with respect to a loss function υ such that
0 ≤ υ(m̂, (x , u, y)) ≤ B, for all (x , u, y) ∈ Z and all sets S. Then for any M ≥ 1 and any
δ ∈ (0, 1) the following bounds hold with probability 1− δ of the random draw of the
sample S:

R(m̂) ≤ RS(m̂) + 2α+ (4Mα+ B)

√
log(1/δ)

2M
.

▶ Thus, we have that for any M ≥ 1 and any δ ∈ (0, 1), with probability 1− δ, the risk R is
bounded by:

R(m̂) ≤ RS(m̂) +
σ2ρ2

λM
+

(
2σ2ρ2

λ
+ ρ

)√
log(1/δ)

2M
.
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Example Dynamics

xt+1 = Axt + But + d(xt) + wt ,

A =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 , B =
1

m


T 2
s /2 0
Ts 0
0 T 2

s /2
0 Ts

 , d(xt) = −α


T 2
s |vx |vx/2
Ts |vx |vx

T 2
s |vy |vy/2
Ts |vy |vy


Uncertain parameters

▶ Nonlinear due to drift term.

▶ Non-Markovian due to the temporal correlation between the state trajectory x and the
uncertain parameters.
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